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Abstract 

This study presents recent developments of the OceanVar oceanographic three-dimensional variational data assimilation 

scheme to create OceanVar2.0. The code has been extensively revised to integrate past developments into a single, consistent, 

fully parallelized framework. In OceanVar, the background error covariance matrix is decomposed into a sequence of 15 

physically based linear operators, allowing for individual analysis of specific error matrix components. We focus on the sea 

level  operator, which provides correlation between Sea Level Anomaly, temperature and salinity  increments. OceanVar2.0 

offers the flexibility to use either a dynamic height or a barotropic model for closed domains as sea level operators. A diffusive 

operator to model the horizontal error correlations, replacing the previously used recursive filter, has been implemented. The 

new code was tested in the Mediterranean Sea and the quality of the analysis assessed by comparing background estimates 20 

with observations for the period January-December 2021. The results highlight the better skill of the barotropic model operator 

with respect to the dynamic height one due to the assumptions required for the level-of-no-motion. Furthermore, we present a 

method to assimilate along track satellite altimetry considering a forecasting model with tides. 

1. Introduction 

Understanding the past state of the ocean and predicting its future behaviour is critical for sustainable development of human 25 

activities and to find a solution to climate change mitigation and adaptation strategies. Oceans are a key component of the 

earth climate system, and they require specific data assimilation schemes due to the sparsity of data in the ocean interior. 

However, satellites help to cover almost synoptically the ocean surface and satellite altimetry contains information of the 

subsurface thermohaline structure that is key to obtain best estimates of the ocean variability at depth. Satellite altimetric sea 
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level data are available from 1992, and altimeters have increased in coverage in the past ten years. Satellite altimetry and 30 

satellite-derived sea surface temperature are crucial in bridging gaps left by in-situ observations. However, their effective 

integration into model corrections requires advanced extrapolation algorithms, as demonstrated in the influential work of De 

Mey and Robinson (1987). 

There are different methodologies for ocean data assimilation, each with its own strengths and weaknesses. Among the inverse 

problem theory, the two most used approaches are the variational and the Kalman filter (Carrassi et al., 2018). Schemes based 35 

on Monte-Carlo algorithms, such as the Particle filter, have been proven to be successful on low-dimensional systems and 

become feasible for high-dimensional geophysical systems only recently (Van Leeuwen et al., 2019). The choice of data 

assimilation method depends on factors such as the type of data available, the desired forecast horizon, and the computational 

resources. 

Recent machine learning (ML) advancements offer potential optimizations for ocean data assimilation (e.g., Barthélémy et al., 40 

2022; Beauchamp et al., 2023). ML can refine errors representation and reveal complex relationships, improving accuracy. To 

fully leverage ML and new data streams, modular and flexible data assimilation codes are essential. As research progresses, 

these advancements will significantly enhance our ability to understand and predict ocean behaviour. 

The data assimilation community has made substantial strides in developing shared software tools like PDAF (Nerger et al., 

2005), ROMS-4DVAR (Moore et al., 2011), DART (Data Assimilation Research Testbed, Anderson et al., 2009), just to 45 

mention a few. Each of these tools offers unique capabilities and has contributed significantly to the field. However, the 

increasing complexity of data assimilation problems, particularly with the adoption of ML, demands continued research and 

development of new tools. 

OceanVar is the data assimilation scheme presented and discussed in this study. It was first introduced by Dobricic and Pinardi 

(2008, hereafter DP08) and it is based on a three-dimensional variational method. OceanVar features a modular design that 50 

allows for flexibility in incorporating diverse data sources and error covariance representations. This adaptability has made it 

suitable for a wide range of applications and research needs. The scheme has been extensively used in several operational and 

reanalysis systems, as evidenced by numerous publications (Dobricic et al., 2007, Storto et al., 2016, Escudier et al., 2021, 

Ciliberti et al., 2022, Coppini et al., 2023). The code has been also used to develop and test new hybrid variational formulations 

(Oddo et al. 2016, Storto et al., 2018); it has been interfaced with Artificial Intelligence based observational operators (Storto 55 

et al., 2021), and has been used to test and develop numerous new schemes and features (Nilsson et al., 2012; Dobricic et al., 

2015; Aydogdu et al., 2016; Storto et al., 2020; Storto and Oddo 2019, Teruzzi et al., 2014, 2018).  

The pervasive use of the code in diverse applications has led to a proliferation of versions that are not always consistent or 

compatible with each other, due to different requirements and operational contexts. The development of OceanVar2.0 

(hereafter OceanVar2 for improved readability) involved comprehensive testing and debugging of the underlying OceanVar 60 

framework, which successfully ensured the consistency and reproducibility of results generated by its various computational 

modules. This rigorous development positions OceanVar2.0 as what we consider a leading advancement in ocean data 

assimilation specifically for satellite altimetry sea level anomalies 
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In OceanVar2, we included a new operator to model the horizontal error correlations. In DP08 and all subsequent 65 

developments, horizontal covariance was approximated using the recursive filter (Lorenc, 1992; Hayden and Purser, 1995). 

The filter is conceptually simple, typically requiring only a few iterations to approximate the Gaussian function, and its 

application on a horizontal grid can be split into two independent directions (Purser et al., 2003). However, in cases of spatially 

or temporally varying correlation radii, the computational advantage of the recursive filter may be questioned (Purser et al., 

2023). To give the code more flexibility in terms of horizontal correlation radii while ensuring computational efficiency, we 70 

modelled the horizontal correlation by a repeated application of the Laplacian operator, which is also the solution of the 

horizontal diffusion equation (e.g., Derber and Rosati, 1989; Weaver and Courtier, 2001). 

In this paper we want to show the capability of OceanVar2 to effectively assimilate along track satellite altimetry with the use 

of a barotropic model operator and multivariate sea level, temperature and salinity statistics. We believe this is still an open 

question in the data assimilation community and we offer a revisited formulation of the barotropic model defined by DP08 and 75 

for the first time a detailed comparison with the dynamic height operator. Additionally, OceanVar2 is applied to a newly 

developed Mediterranean Sea circulation forecasting model (Clementi et al., 2023) that considers tidal forcing. Tides are 

becoming an essential component of the resolved variability of the ocean general circulation, and they cannot anymore be 

neglected in numerical ocean circulation models (Arbic, 2022). Satellite altimeters sample tides along their track as well as the 

mesoscales. Using OceanVar2 we present a preliminary solution to the problem of assimilation in presence of tidal components 80 

both in model and observations. 

The manuscript is organized as follows. After the introduction, Section 1 provides a general overview of the variational 

formulation and the characteristics of the OceanVar2. Section 3 presents the background and the observational error covariance 

matrixes formulation and their specific operators. In Section 4 we describe the experimental set-up and the altimetry 

assimilation methods. In Section 5 we discuss the results. In Section 6 an overview on the code performances is provided. 85 

Finally, Section 7 provides the summary and conclusions. 

2. Formulation of the Variational Assimilation Scheme  

The general cost function in three-dimensional variational data assimilation is defined as:  

𝐽(𝒙) = !
"
(𝒙 − 𝒙𝒃)$𝐁%!(𝒙 − 𝒙𝒃) +

!
"
(𝒚 − 𝒉[𝒙])$𝐑%!(𝒚 − 𝒉[𝒙])       (1) 

where, x is the true state vector for the ocean model prognostic variables, 𝒙𝒃 is the background state vector, B is the background 90 

error covariance matrix, h is the observational operator, y are the observations, R is the observational error covariance matrix 

and T indicates the matrix transpose. The state vector contains the following model state variables: 

𝒙 = [𝑇, 𝑆, 𝑢, 𝑣, 𝜂]$   

where T is the three-dimensional temperature field, S the three-dimensional salinity field, u and v are the total horizontal 

velocity components and 𝜂 the two-dimensional sea surface height. 95 
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The increments are defined as: 

𝛿𝒙 = 𝒙 − 𝒙&. 

When the observations are dynamical variables of the numerical model, the observational operator is a spatial interpolation 

algorithm to map the model solution into the observation locations. When the observed variables are indirectly related to model 

dynamical variables, the observational operator h may be nonlinear. Using a Taylor expansion of the observational operator 100 

around the background, we can write: 

𝒉[𝒙+𝒙& − 𝒙&] = 𝒉[𝒙& + 𝛿𝒙] 	≈ 𝒉[𝒙&] + 𝐇𝛿𝒙  

where H is the Jacobian matrix of h at 𝒙 = 𝒙&: 

𝐇 = 𝝏𝒉
𝝏𝒙
8
𝒙*𝒙!

  

then: 105 

𝒚 − 𝒉[𝒙] = 𝒚 − 𝒉[𝒙& + 𝛿𝒙] ≈ {𝒚 − 𝒉[𝒙&]} − 𝐇𝛿𝒙         (2) 

In case of linear h, (2) is exact. 

Defining the misfit (or innovation), 𝒅 = 𝒚 − 𝒉[𝒙&], we can rewrite (1) linearized around the background state (e.g., Lorenc, 

1997) as: 

𝐽(𝛿𝒙) = !
"
𝛿𝒙$𝐁%!𝛿𝒙 + !

"
(𝒅 − 𝐇𝛿𝒙)$𝐑%!(𝒅 − 𝐇𝛿𝒙)        (3) 110 

The misfit in OceanVar is estimated using the FGAT (First Guess at Appropriate Time) method.  

The minimum of 𝐽(𝛿𝒙) in (3) is obtained for 𝒙+ = 𝒙, so that we obtain the increments 𝛿𝒙 that give the analysis at an 

instantaneous time: 

𝒙+ = 𝒙& + 𝛿𝑥 ≈ 𝒙  

The valid time of the increment using the FGAT algorithm has been discussed and investigated in literature (see Massart et 115 

al., 2010). If the assimilation cycle goes from tn to tn+1. the misfits are computed using the FGAT in the window [tn; tn+1]: 

𝒅|[𝒕𝒏;𝒕𝒏#𝟏] = (𝒚 − 𝒉[𝒙&])|[𝒕𝒏;𝒕𝒏#𝟏]  

and the increments are applied at tn+1. Formally our analysis is defined as the instantaneous field: 

𝒙+(𝑡01!) = 𝒙&(𝑡01!) + 𝛿𝑥  

where 𝒙&(𝑡01!) is the instantaneous background field simulated by the nonlinear ocean model starting from tn.   120 

Existence and uniqueness of 𝒙+ is guaranteed because J is quadratic with R and B positive defined and can be found by forcing 

the gradient of the cost function to zero. The gradient of (3) is: 

∇𝐽(𝛿𝒙) = (𝐁%! +𝐇$𝐑%!𝐇)𝛿𝒙 − 𝐇$𝐑%!	𝒅          (4) 

Following DP08, the OceanVar scheme assumes that the B matrix can be rewritten and decomposed as: 

𝐁 = 𝐕𝐕2             (5) 125 

and the cost function may equivalently be minimized using a new control variable v (e.g., Lorenc, 1997) defined using the 

transformation matrix 𝐕1: 
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𝒗 = 𝐕1𝛿𝒙             (6) 

Where the superscript “+” indicates the generalized inverse. The vector v is defined on the control space, and the vector 𝛿𝒙 on 

the physical space. The cost function (3) now has the form: 130 

𝐽 = !
"
𝒗$𝒗 + !

"
(𝐇𝑽𝒗 − 𝒅)$𝑹%!(𝐇𝑽𝒗 − 𝒅)          (7) 

3. Modelling the background error covariance matrix 

The transformation matrix V is modelled at each minimization iteration as a sequence of linear operators (e.g., Weaver et al., 

2003). In this way V successively transforms increments in the control space towards final increments in the physical space. 

In OceanVar and OceanVar2 the matrix V is defined in the following way: 135 

𝐕 = 𝐕3𝐕4,6𝐕7𝐕8𝐕9.           (8) 

From right to left Vv defines the vertical error covariance, VH the horizontal error correlation, Vη is the sea level operator 

containing correlation between temperature, salinity and sea surface elevation, and Vu,v forces a geostrophic balance between 

temperature, salinity and the velocity components. Finally, VD is a divergence-damping operator avoiding spurious currents 

close to the coast in the presence of complex coastlines, as defined by DB08.  140 

The vertical transformation operator Vv has the form: 

𝐕9 = 𝐒𝐜𝚲𝐜
!
";              (9) 

where columns of Sc contain eigenvectors and Ʌc is a diagonal matrix with eigenvalues of multivariate Empirical Orthogonal 

Functions (EOFs). In OceanVar code, the EOFs can be defined pointwise (Coppini et al., 2023) or by regions (DP08). 

To account for horizontal field correlations, VH is considered as the discretized form of the diffusive operator: 145 

𝐕8 = 𝜵𝑯 ∙ (𝑘=𝜵𝑯𝐶)  

where 𝜵𝑯 is the horizontal differential operator, 𝑘= is the spatially variable diffusivity coefficient corresponding to horizontal 

correlation lengths, and 𝐶 is a generic increment. The operator is discretized with a Euler-Backward implicit scheme solved 

by means of LU decomposition of a tri-diagonal matrix, following Hoffman et al. (2011). Assuming a gaussian solution 

(Weaver and Courtier 2001), the relation between 𝑘= and the horizontal correlation radius is: 150 

𝑅8 = K2𝑘=∆𝑡  

Where 𝑅8, in meters, is the horizontal correlation radius, and ∆𝑡 = 1 second is the pseudo time-step used to integrate the 

diffusion equation.  

The present formulation of the OceanVar2 allows the possibility to compute correction also for the velocity field. The 

𝐕4,6	operator calculates the velocity corrections assuming geostrophic balance. The advantage of the geostrophic assumption 155 

is that it requires only a small computational effort, but the disadvantage is that it is not valid at the equator and may produce 

velocity vectors orthogonal to the coast. Enforcing the zero-boundary condition for the velocity component perpendicular to 

the coast, the divergence component of the velocity field may become unrealistically large. Therefore, the divergence damping 
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operator 𝐕3 in (8) is implemented to damp velocity divergence near coasts, while maintaining the vorticity part unchanged. 

Details on the implementation of the divergence damping operator are provided in DP08. As highlighted in DB08, the sequence 160 

of operator multiplication is critical and determined through a combination of physical reasoning and iterative experimentation. 

Initially, all increments are projected onto multivariate EOFs for sea level, temperature, and salinity, as these effectively 

capture ocean stratification (Sanchez de la Lama et al., 2016) and the relationship with sea level for assimilation purposes (De 

Mey and Robinson, 1987). Next, the increments are distributed horizontally. Following this, adjustments due to the sea level 

operator are computed based on the vertically projected temperature and salinity increments. Subsequently, increments in 165 

horizontal velocities are derived, and the process concludes with the application of a divergence damping filter. 

 

3.1 The sea level and the velocity operators 

Dobricic et al. (2007) found that the vertical EOFs computed from the covariance between temperature, salinity and sea level 

could produce corrections that are not geostrophically balanced and proved that the enforcement of the geostrophic relationship 170 

for the sea level in the error covariance matrix has a significant positive impact on the accuracy of the analyses. Thus, in 

OceanVar2 the sea surface height increments from EOFs projections are overwritten using a sea level operator. Two different 

sea level operators, with different levels of complexity, are implemented in OceanVar2. 

The first is the commonly used Dynamic Height operator O𝐕7 = 𝐕>?P, which we write here as: 

𝐕38 = 𝛿𝜂>? = − !
@%
∫ [−𝛼𝛿𝑇 + 𝛽𝛿𝑆]A
%> 𝑑𝑧          (10) 175 

Where D is a uniform reference level, corresponding to a level of no motion, 𝛿𝑇 and 𝛿𝑆 are temperature and salinity increments 

respectively, 𝛼 and 𝛽 the expansion and contraction coefficients. The correlation between Sea Level Anomaly (SLA) from 

altimetry and the dynamic height anomaly computed from in-situ measurements is high for regions deeper than 1000 m 

(Dhomps et al., 2011), at synoptic, seasonal and interannual time scales.  

OceanVar2 allows the application of a more complex linear 𝐕7 which derives from the steady state results of a linear barotropic 180 

model forced by buoyancy anomalies induced by the temperature and salinity increments (DB08). The barotropic model 

equations, discretized in time by the semi-implicit scheme (Kwizak and Robert, 1971), are: 
B&#'%B&('

"∆D
− 𝑓𝑉0 = −𝑔𝐻 EF∗

EG
− ∫ Z∫ E(I&)

EG
A
%K 𝑑𝑧L[A

%? 𝑑𝑧 + 𝛾∇"𝑈∗      (11) 

N&#'%N&('

"∆D
+ 𝑓𝑈0 = −𝑔𝐻 EF∗

EO
− ∫ Z∫ E(I&)

EO
A
%K 𝑑𝑧L[A

%? 𝑑𝑧 + 𝛾∇"𝑉∗      (12) 

F&#'%F&('

"∆D
+ ^EB

∗

EG
+ EN∗

EO
_ = 0          (13) 185 

where U and V are vertically integrated velocity components, f is the Coriolis parameter, g acceleration due to gravity, H the 

bottom depth, 𝜂 the surface elevation, 𝛿𝑏 the buoyancy anomaly, and 𝛾 is the horizontal viscosity coefficient. The superscripts 

indicate the time step relative to n, and the superscript ‘‘*” indicates the weighted average between two timesteps. A more 

detailed description of the barotropic model and its discretization can be found in DB08. In the present version the barotropic 
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model assumes closed lateral boundaries, thus the possibility to be used as balance operator needs to be carefully evaluated. 190 

In the future the barotropic model will be developed also with open boundary conditions.   

In the previous equations, the buoyancy forcing term is defined as: 

𝛿𝑏 = 𝑔 ^I@
@%
_  

and the density perturbation 𝛿𝜌 is estimated by the linear equation: 

𝛿𝜌 = 𝛼𝛿𝑇 − 𝛽𝛿𝑆            (14) 195 

Expansion and contraction coefficients (𝛼 and 𝛽) in eqs. 10 and 14 can be assumed space independent or spatially variable 

and estimated linearizing the equation of state around a user defined background temperature (𝑇&) and salinity field (𝑆&):  

𝛼 = E@
E$
|$*$!,P*P!  

𝛽 = E@
EP
|$*$!,P*P!  

In the latter case the coefficients are read from an external input file. 200 

In OceanVar2 the sea-level operators produce the final sea surface height increments, replacing the increment produced by the 

cross-covariance between temperature, salinity and sea-level provided by the EOFs (DB08, Storto et al., 2018). 

The choice on the sea level operator has consequences on the velocity operator 𝐕4,6. 𝐕4,6 computes the velocity correction 

assuming geostrophic balance under Boussinesq and incompressible approximations: 

𝑓𝑢Q(𝑧) = − !
@%

ER
EO

  205 

𝑓𝑣Q(𝑧) = + !
@%

ER
EG

  

Decomposing the pressure p at any level z as: 

𝑝(𝑧) = 𝑝+DS + 𝑔𝜌A ^𝜂 + ∫
I@
@%

A
%K 𝑑𝑧_  

where 𝑝+DS	is the atmospheric pressure, 𝑔 is the effective gravity, 𝜂 is the free surface elevation and 𝛿𝜌 is the density departure 

from a reference state 𝜌A. Neglecting the atmospheric pressure, and rewriting the hydrostatic term as buoyancy term, the 210 

geostrophic velocities become: 

𝑓𝑢Q(𝑧) = −^𝑔 EF
EO
+ ∫ EI&

EO
A
%K 𝑑𝑧_              (15) 

𝑓𝑣Q(𝑧) = +^𝑔 EF
EG
+ ∫ EI&

EG
A
%K 𝑑𝑧_             (16) 

When adopting the barotropic model as 𝐕7, the sea surface height in eqs. 15 and 16 is replaced by the increments deriving 

from the solution of the barotropic model and the lower limit of baroclinic term integral  reaches -H(x,y), the ocean floor.  On 215 

the other hand, when 𝐕7 = 𝐕>? the horizontal pressure‐gradient force must vanish at the level of no motion, D, in (10). In eqs. 

15 and 16  𝜂 is then substituted with 𝛿𝜂>? and the velocity increments are computed only up to the depth D. Thus, in case of 

the barotropic model, velocity corrections are provided for the entire water column, while in case of dynamic height velocity 

corrections are provided from surface to the level of no motion.  
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3.2. The observational error covariance matrix and quality checks 220 

The observation error 𝜖A is defined as the difference between the observation vector y and the observation counterpart in the 

true state xt (Brankart et al., 2009) 

𝒚 = 𝒉∗[𝒙D] + 𝝐A 			→ 				 𝝐A = (𝒚 − 𝒚D) − (𝒉∗[𝒙D] − 𝒚D) = 𝝐S + 𝝐T						

where 𝒚t is the true (unknown) observation value,	𝒉∗	is an observation operator,		𝝐S labels the instrumental or measurement 

error (distance of the actual value from the true state) and 𝝐Tgathers the different components of the representativeness errors, 225 

due to inaccuracies in 𝒉∗ and the sampling error of the observations with respect to the true signal. Under the assumption of 

unbiased error < 𝜖A >= 0	and that 𝜖S	and 𝜖T are uncorrelated, the error covariance matrix R can be constructed as the sum 

of two terms that can be estimated independently : 

𝐑 =< 𝝐A𝝐A >≈< 𝝐S𝝐S > +< 𝝐T𝝐T >= 𝐑S + 𝐑T	.  

If the errors associated to different observations are uncorrelated, the two matrices greatly simplify in diagonal ones. This 230 

hypothesis is valid for most of current global/regional observational data set and it is generally correct when observations are 

sampled relatively far in time (say few hours to avoid cross-correlation term in Rm) or sparse with respect to grid resolution 

(to not include off-diagonal elements in Rr). Observation errors are a function of observation type in OceanVar2. Several 

options are implemented in the OceanVar2 to shape the observation error and the interested reader is asked to consult with the 

code manual, available with the code. 235 

OceanVar2 also contains various procedures for the quality control of observations. A background quality check is included 

to reject observations that are too far from the model estimate. This quality check uses a threshold on the squared misfit defined 

in (2). Alternatively, OceanVar2 allows a relaxation of the Gaussian approximation when large initial misfits are involved. In 

standard theory, these misfits are associated with large weights and minimisation is primarily in the direction of reducing such 

innovations rather than reducing the innovations close to zero. In OceanVar2, following Storto (2016), the initial misfit 240 

distribution can be approximated with a Huber norm PDF to reduce the impact of such tails. 

Provided that observation errors are assumed to be spatially and temporally uncorrelated, horizontal and vertical data thinning 

rejects observations too close in space. In case of multiple data from the same instrument falling in the same model grid cell,  

only the observation closest to the analysis time is retained. Coastal rejection can prevent the assimilation of altimetric and in-

situ coastal observations, to avoid inconsistencies between observed and modelled coastal processes. In addition, a rejection 245 

criterion based on the model bathymetry can be activated preventing the assimilation of data in shallow areas. 

4. Experimental Design 

The experimental design is driven by the aim of showing the best set up of OceanVar2 for the assimilation of satellite altimetry 

together with ARGO floats and XBT in the Mediterranean Sea. The set-up of the ocean model used in this study is a simplified 

version of the physical component of the Mediterranean Forecasting system of the Copernicus Marine Service (Clementi et 250 
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al., 2023). The model is implemented over the entire Mediterranean basin (Fig.1) with a horizontal grid resolution of 1/24˚ 

(approx. 4 km) and 141 non-uniformly distributed vertical levels. The ocean model code is based on the Nucleus for European 

Modelling of the Ocean NEMO (v4.2, Madec et al., 2023) and includes the representation of tides. Atmospheric forcings are 

calculated interactively with the operational fields of the European Centre for Medium-Range Weather Forecasts (ECMWF). 

The only difference to the Copernicus operational system is the omission of the surface wave modelling coupling. Details on 255 

the model implementation can be found in Clementi et al. (2023). 

Starting from an operational analysis, we performed a 1-year simulation followed by one year of daily assimilation cycles of 

in-situ (XBT and ARGO floats) and satellite SLA data for the whole 2021 year. Fig.1 shows the positions of the assimilated 

in-situ and SLA data; the SLA data refer to a period of 21 days. In our experimental set-up we perform daily assimilation 

cycles starting at midnight every day and we assimilate all the data available the day previous the analysis time.   260 

4.1. Correcting the misfits for tides 

A fundamental aspect to consider when assimilating SLA is the possible presence of tides in the modelled solution and in the 

observed data. Discrepancies between modelled and observed tides can, as a first approximation, be attributed to inaccuracies 

in the bathymetry of the model, the bottom and/or the coastal frictional dynamics. However, the misfit containing tidal signal 

between observed and modelled estimates in the present OceanVar2 formulation would be projected into baroclinic increments 265 

by the covariance matrix of the background error (eq. 8). It is therefore essential to filter out the tidal signal from both the 

observed and modelled SLA. This paper offers a solution to the assimilation of satellite altimetry in a model with tides, showing 

that a filtering procedure can be accurate enough and that no additional adjustment is required in the analysis. 

The Copernicus along-track sea level anomalies are provided together with an estimate of the tidal signal along the tracks so 

tides can be filtered easily from the observations. To remove the tidal signal from the model background field, the tidal 270 

amplitude and phase for the eight components included in the Mediterranean Sea model (M2, S2, K1, O1, N2, P1, Q1 and K2) 

have been derived from a simulation output by harmonic analysis of the hourly sea level field. Following Cao et al. (2015), 

six months of hourly data were used for the harmonic analysis. The harmonic analysis was performed using Pawlowicz et al. 

(2002) algorithm, based on the Foreman method (Foreman 1977; Foreman 1978) at each model grid point. Knowing the tidal 

constants, it is possible to estimate the model tidal sea level at the exact time and location of the altimetry data and remove 275 

this component from the model outputs.  

During the model simulation, misfits between model estimates and observations are computed and before entering the 

OceanVar2, the misfits are updated removing the tidal signal from both observations and model results.  In Fig.2 an example 

of SLA satellite track is provided with model estimates and the satellite observations, the position of the track is shown in 

Fig.1. In Fig.2 upper panel, the full signal from the model simulation and the observations is drawn as a function of latitude 280 

along the track. Figure 2 middle panel shows the de-tided signals in addition to a de-biasing procedure described by Dobricic 

et al. (2012). Dobricic et al. (2012) shows that this method is the best for considering differences between the large-scale steric 

signal and the mean dynamic topography between observations and model. The average difference along the track is removed 
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if the track is continuous, or for individual segments if the track is discontinuous due to the presence of land. Finally in Fig.2 

bottom panel the two tidal components for the observational and modelled SLA are shown indicating the large-scale signal of 285 

tides in the open ocean.  

4.2. Sensitivity experiments 

In addition to a simulation, two sets of 1-year assimilative experiments are presented and their results compared and assessed 

against each other and observations. All the experiments assimilate ARGO floats and XBT temperature and salinity data in the 

whole domain including the Atlantic part, while SLA data are assimilated only within the Mediterranean Basin (see Fig.1). In 290 

every experiment the vertical component of the background error covariance matrix is modelled using 25 tri-variate EOFs 

(temperature, salinity and SLA) computed following Dobricic et al. (2006) for every model grid point. The EOFs are computed 

from a 30 years timeseries of the Mediterranean Sea reanalysis (Escudier et al., 2021). The horizontal correlation radius was 

set to a constant value of 27 kilometres, determined through sensitivity experiments. The diffusive filter was iterated five times 

to model the horizontal covariance. To account for coastal effects, the correlation radius was linearly decreased starting from 295 

30 kilometres offshore to the minimum grid resolution near the coast. Additionally, a Neumann boundary condition was 

applied at the coast, setting the normal derivative of the field to zero. Observations are rejected if they are closer than 15 km 

from the coast and if the misfits are larger than fixed thresholds: 5ºC for temperature, 2 psu for salinity; and 30 cm for SLA. 

The observational error covariance matrix is assumed diagonal. All the SLA data have an associated error of 3 cm regardless 

of the satellite and the geographic distribution. The observational errors for in-situ observations were tuned via the Desroziers’ 300 

method (Desroziers et al., 2005) and varies monthly. Temperature and salinity observational errors peak at the surface with 

values of 0.45 ºC and 0.14 psu, from 75 to 325m depth they decrease linearly to values of 0.2 ºC and 0.05 psu, starting from 

750m they have constant values of 0.1 ºC and 0.02 psu respectively. 
We performed two sets of experiments with different OceanVar2 sea level operators and choices of free parameters. In Exp-

1, which is used as a reference experiment, the barotropic model is used as sea level operator with constant (in space and time) 305 

α and β in eq.14 and SLA data are rejected when falling in areas shallower than 100m. In the second experiment (Exp-2), 

consistently with Adani et al. (2011), we rejected SLA data falling in areas shallower than 150m. Experiment 3 is similar to 

Exp-2, but we test the sensitivity to variable expansion and contraction coefficients in eq.14. The coefficients are computed 

linearizing the equation of state around a monthly mean climatology. In all these three experiments we integrated the barotropic 

model for 3 days with a time-step of 3600 sec and then used the average of the last day as approximation of the steady state 310 

solution, the integration of the barotropic model is fully implicit and the turbulent viscosity is equal to 650 m2/s.   

Experiments 4, 5 and 6 use the dynamic height as sea level operator. The difference among them is the choice of the level of 

no motion depth. In Exp-4 we used a level of no motion equal to 150m, thus Exp-2 and Exp-4 differ only for the sea level 

operator. In Exp-5 the level of no-motion is 350m in agreement with the Mean Dynamic Topography (Rio et al., 2014) used. 

Finally, in Exp-6 the level of no motion is set at 1000 m which is the traditional choice for the operational setting of the 315 

Mediterranean Sea forecasting system, Coppini et al. (2023). In all these experiments, the depth of the level of no motion 
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naturally coincides with the minimum depth of SLA observations inclusion in the data assimilation scheme. In the first set of 

experiments, even if the state vector contains also the velocity field, the increments are applied only to the assimilated variables 

(T, S and 𝜂). In the second set of experiments, also velocity corrections are applied. Throughout the remainder of the paper, 

experiments marked with an asterisk refer to those with velocity corrections. The first sets of experiments are summarized in 320 

Table 1: the second set of experiments has the same naming convention as the first set, with the sole difference being the 

application of the velocity correction in the analysis definition. 

 

 Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6 

Sea level operator BM BM BM DH  DH DH 

𝜶/𝜷 Const. Const. MC Const. Const. Const. 

Reference Level for DH (m) N/A N/A N/A 150 350 1000 

SLA Min depth rejection (m) 100  150  150  150  350  1000 
Table 1 Sensitivity experiments set-up. First row indicates the sea level operator used: BM= Barotropic Model; DH=Dynamic height. Second 
row indicates the choice for expansion and contraction coefficients: constant in space and time (Const) and spatially and temporarily variable 325 
as computed from monthly climatology (MC). Third row indicates the reference level for the lower integral limit of the dynamic height 
operator and thus the level of not motion for the 𝐕𝐮,𝐯 part of the model background error covariance matrix. Fourth row indicates the 
minimum depth used as criterium to reject SLA data.  

5. Results 

Before analysing the skills of the different experiments, temperature and salinity increments obtained, starting from the same 330 

set of SLA misfits, but using the different assimilation scheme set-up described in Table 1 are shown in Fig.3. The differences 

between the experiments are generally small, and of the order of 10%. The largest differences are due to the different number 

of SLA data assimilated, because of the different level of no motion used or the different minimum depth rejection criterion 

adopted. We note that when the same data are assimilated, thus in areas deeper than 1000m, very similar increments in SLA 

are generated by the OceanVar2 regardless of the schemes adopted. However, the schemes differ on how these increments are 335 

projected into temperature and salinity increments. Note the ordinate axes are strongly stretched in the figure to highlight the 

first 150m depth where most of the corrections are confined. Comparing Exp-2 and 3, which differ only in the use of spatially 

and temporally variable expansion and contraction coefficients, we observed small but noticeable differences in the 

temperature and salinity increments, particularly in the amplitude of near-surface maxima. The choice of sea level operator 

substantially influenced the results. When using Dynamic Height with a level of no motion set at 1000 meters (Exp-6), 340 

temperature and salinity increments were comparable to those obtained with the barotropic model. The primary cause of the 

observed differences appears to be the constraint imposed on assimilated data by the level of no motion. Reducing the level of 

no motion (Exp-4 and 5) allowed for the assimilation of more sea level anomaly data, but resulted in considerably different 

temperature and salinity increments within the first 100 meters compared to the barotropic model.  

https://doi.org/10.5194/egusphere-2025-1553
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



 

12 
 

To fully assess the performances of Table 1 experiments, the mean squared error (e.g., Murphy, 1988) is decomposed and the 345 

single components analysed: 

𝑀𝐵 = 𝑚o −	𝑜̅,             (17) 

𝑆𝐷𝐸 = 𝜎S − 𝜎U,             (18) 

𝐶𝐶 = !
V*

!
V+

!
W
∑ (𝑚X −𝑚o)(𝑜X − 𝑜̅)W
X*! ,         (19) 

where MB is the mean bias error, SDE is the standard deviation error and CC is the cross correlation between the modelled 350 

and observed fields. The i-th modelled and observed variable is denoted by 𝑚X and 𝑜X, respectively; 𝑚o  and 𝑜̅ are the respective 

averages (horizontal and temporal); while 𝜎S and 𝜎U are the respective standard deviations. In addition, the unbiased root 

mean squared error (uRMSE) is computed: 

𝑢𝑅𝑀𝑆𝐸 = v!
W
∑ [(𝑚X −𝑚o) − (𝑜X − 𝑜̅)]"W
X*!           (20) 

It is important to note that the model results and observations used here are the same as those used to calculate misfits within 355 

the assimilation cycle. However, while not all misfits are utilized in the assimilation process, all available observations are 

included in the error statistics. This ensures that all experiments are evaluated based on the same reference dataset of 

observations. Furthermore, to evaluate model performance even in very shallow regions, the observational dataset used in the 

misfits, and thus in the calculation of the error statistics, includes sea level anomaly (SLA) data covering regions up to 10m 

depth. This allows for the assessment of model skill in very shallow regions where data are not assimilated in any of the 360 

presented experiments. 

 

5.1. Barotropic sea level operator and simulation comparison 

The performance of Exp-1 is compared with the non-assimilative model simulation. In Fig.4 the statistics for the SLA are 

shown. Every point in the time-series represents 5-day window statistics. That is, the overbars and the standard deviations in 365 

eqs.17, 18, 19 and 20 are computed over a 5-day time window.  

The simulation has an error, slightly growing during the second half of the year, of about 5 cm. The model with assimilation 

underwent a 10-20 day adaptation period, after which the uRMSE of the misfit stabilizes around 3 cm. A slight but consistent 

improvement is noted in the CC. No seasonal cycle is observed in the CC of Exp-1, whereas the simulation exhibits a distinct 

summer minimum in the correlations. The SDE in the simulation is generally negative and it is characterized by 5-days 370 

oscillations. In Exp-1, the SDE (Fig.4 bottom panel) stabilized around values of 0.25 cm, indicating an overestimation of the 

observed variability. 

The SLA yearly averaged statistics were clustered according to ocean depth and are plotted in Fig.5. In areas with bathymetry 

between 150 and 2500 m, the simulation exhibited an almost constant uRMSE. However, the error increases in shallower and 

deeper regions, reaching the maximum in areas deeper than 3500 m. The uRMSE of the Exp-1 was more constant and 375 
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approximately half of the corresponding simulation statistics. Regardless of the region considered, Exp-1 has better statistics 

than the simulation, indicating the effectiveness of the assimilation procedure. For the CC differences between simulation and 

Exp-1 results are also evident. In the simulation, CC decreases with depth while for the Exp-1 we observe an opposite tendency. 

In terms of SDE, the largest improvements w.r.t. the simulation are confined in shallow areas. The simulation underestimates 

the variance in areas with bathymetry shallower than 1000m, this is particularly evident in areas shallower than 150m. The 380 

model with data assimilation tend to overestimate the observed variability particularly in shallow areas. 

In Fig.6 the vertical profiles of uRMSE, MB, CC and SDE for salinity (upper panels) and temperature (bottom panels) for the 

simulation and the Exp-1 are shown. Statistics are computed against all available ARGO and XBT profiles.  

In Fig.6 the vertical structure of the salinity uRMSE is similar between the simulation and the Exp-1. The salinity errors are  

characterized by a near surface maxima which is reduced in the assimilative run. The MB in the simulation has a subsurface 385 

minimum at 100 m depth, while Exp-1 misfits have almost homogenous values through all the water columns. The CC 

resembles the vertical distribution of the uRMSE, with values approaching the unity in both the experiments below 500 m 

depth. Finaly the salinity SDE confirms the large improvement arising from the assimilation procedure. In the near surface 

layer, the simulation and the assimilative run have opposite behaviours, with the simulation overestimating the observed 

variability while the assimilative run underestimating it. Below 100 m depth the SDE salinity values are noticeably reduced. 390 

The temperature uRMSE and CC are characterized by a strong, summer intensified (not shown), subsurface 

maximum/minimum due to the model difficulties in reproducing the correct stratification. A second uRMSE maximum (CC 

minimum) is present around 300 m probably related to the misrepresentation of the Levantine Intermediate Water (LIW) 

advection in the different Mediterranean regions. A third temperature error relative maximum is present between 1000 and 

1500 m depth. The assimilation corrects all the errors by approximately 30-50% down to 500 m, less below this depth.  395 

Temperature MB is largely improved by assimilation. The simulation tends to overestimate the observed temperature 

variability, and the SDE has a marked vertical structure. In general, the assimilation seems capable to correct most of the model 

errors except in the upper thermocline/mixed layer depth. Analysis of the corresponding time-series (not shown) indicates a 

clear summer maximum in all the error statistics in proximity of the mixed layer depth. This behaviour is shared between all 

the different experiments, but it is clearly reduced in the assimilative runs. 400 

5.2 Sensitivity experiments to the sea level operator  

Given that the CC is always positive for all the experiments, the misfit statistics for the experiments listed in Table 1 are 

analysed in terms of relative improvement with respect to the simulation or Exp-1 according to the following metrics definition: 

𝑆_𝑢𝑅𝑀𝑆𝐸YGR# = x
𝑢𝑅𝑀𝑆𝐸[\] 	−	𝑢𝑅𝑀𝑆𝐸YGR#

𝑢𝑅𝑀𝑆𝐸[\]
y × 100 

𝑆_𝐶𝐶YGR# = x
𝐶𝐶YGR# − 𝐶𝐶[\]

𝐶𝐶[\]
y × 100 405 
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Where # indicates the different experiments listed in Table 1 and “Ref” the simulation or Exp-1. In the following these statistics 

are presented only for the SLA data given that a similar comparison for the temperature and salinity did not provide additional 

insights. 

Figure 7 illustrates the performance of the six different data assimilation experiments in terms of improvements in root-mean-

square error (S_uRMSE) and correlation coefficient (S_CC) relative to the model simulation. The top panels display the time 410 

evolution of these improvements, highlighting both short-term fluctuations and overall trends. The bottom panels present the 

time-averaged S_uRMSE and S_CC improvements clustered by bathymetric depth ranges, revealing how the effectiveness of 

each experiment varies with depth. All assimilative experiments outperformed the model simulation. Experiments using the 

dynamic height as the sea level operator, with levels of no motion set at 150 meters (Exp-4) or 1000 meters (Exp-6), generally 

performed worse than the other experiments. For Exp-6, the differences in both uRMSE and CC were particularly noticeable 415 

in regions shallower than 1000 meters, where SLA data were not assimilated. However, even in these regions, Exp-6 

substantially outperformed the model simulation, suggesting that corrections applied in deeper areas effectively propagated 

into shallower regions. In Exp-4, the deterioration in results compared to other experiments was primarily confined to deeper 

regions.  In areas shallower than 150 m Exp-1 outperforms the other experiments, however the performances of the experiments 

are similar indicating that the coastal areas are strongly constrained by the open ocean dynamics. A clear dependence of the 420 

S_CC on model bathymetry was evident in all experiments. The percentage of improvement in S_CC increased with growing 

depth, with the most significant improvements observed in areas deeper than 3500 meters, where the model simulation 

exhibited the smallest CC. In shallow regions, Exp-6 generally provided the smallest improvement in S_CC compared to the 

other experiments. The results demonstrate that certain experiments achieve substantial improvements in deep-ocean regions, 

while others show more consistent performance across all depths. These results highlight the challenges associated with 425 

choosing an appropriate level of no motion in data assimilation of SLA. The choice of the level of no motion can significantly 

impact the accuracy of model analysis, especially in complex regions with varying bathymetry and ocean dynamics. 

Figure 8 presents the relative performance of five data assimilation experiments (Exp-2 through Exp-6) compared to a baseline 

assimilative experiment (Exp-1), now used as the reference. The top panels illustrate the time series of percentage changes in 

root-mean-square error (S_uRMSE) and correlation coefficient (S_CC). The bottom panels depict the time-averaged S_uRMSE 430 

and S_CC changes, categorized by bathymetric depth ranges. In contrast to the previous figure, where improvements were 

relative to a model simulation, this figure demonstrates the relative performance of each experiment against the initial data 

assimilation run. Negative values indicate a decrease in performance (higher uRMSE or lower CC) compared to Exp-1, while 

positive values indicate improvement. This comparison highlights the incremental benefits or drawbacks of different 

experimental setups in relation to a specific data assimilation configuration. 435 

All the experiments employing the barotropic model perform similarly to each other. In terms of time-series comparison, Exp-

4 (with dynamic height as sea level operator and level of no motion equal to 150m) has performance worse than all the other 

experiments. Among the experiments using the dynamic height operator, Exp-5 generally has better results both in terms of 

uRMSE and CC. The analysis per bathymetric classes shows  better the differences among the experiments. None of the 
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experiments outperform Exp-1 in regions shallower than 150m both in terms of uRMSE and CC. In deeper areas we see that 440 

the Exp-4 and Exp-5 produce, in general, worse results, and the worsening is amplified as the depth increases and the level of 

no motion decreases; 1000m depth is a clear boundary for the effectiveness of Exp-6. Employing the barotropic model as a 

sea level operator yields consistent results, with small sensitivity to the minimum depth used in the rejection criterion or to the 

choice of constant or variable expansion/contraction coefficients. This confirms the difficulty of establishing a constant level 

of no motion and highlights the benefit of using the barotropic model as a balancing mechanism. Table 2 provides a summary 445 

of the spatially and temporally averaged statistics for all experiments, including those from the second set discussed 

subsequently. 

 

 uRMSE CC SDE S_uRMSEsim S_uRMSexp-1 S_CCsim S_CCexp-1 
Sim 5.05 0.25 -0.02 / / / / 

Exp-1 2.85 0.75 0.27 43.49 / 197.64 / 
Exp-2 2.85 0.75 0.28 43.59 0.17 197.74 0.04 
Exp-3 2.83 0.75 0.28 43.94 0.80 199.03 0.47 
Exp-4 3.02 0.72 0.24 40.18 -5.85 186.08 -3.88 
Exp-5 2.89 0.74 0.28 42.75 -1.31 194.75 -0.97 
Exp-6 2.92 0.73 0.28 42.12 -2.42 192.38 -1.77 
Exp-1* 2.76 0.77 0.19 45.40 3.37 205.74 2.72 
Exp-2* 2.77 0.76 0.21 45.15 2.94 204.52 2.31 
Exp-3* 2.77 0.76 0.22 45.11 2.86 204.18 2.20 
Exp-5* 2.79 0.76 0.22 44.80 2.32 203.16 1.86 
Exp-6* 2.84 0.75 0.22 43.63 0.24 199.13 0.50 

Table 2. Global averages of experiments statistics. Units in uRMSE and SDE are cm. Subscripts in the relative performance statistics [%] 
indicate the reference experiment used (simulation or Exp-1).  450 

 

5.3. Sensitivity experiments to velocity corrections 

Another set of experiments (Exp-1* to Exp-6*) was carried out including velocity corrections in the analysis estimates.  The 

OceanVar2 setup used in Exp-4* generated velocity increments that led to numerical instabilities in the ocean model, 

preventing this simulation from completing. In contrast, the other experiments in this set ran without such issues, underscoring 455 

the challenges associated with dynamic height methods. Consequently, our focus is on the stable experiments. Notably, the 

successful experiments in the second set, which included velocity corrections, demonstrated improved performance compared 

to their counterparts in the first set, which lacked velocity corrections (Table 2). The extent of improvement varies depending 

on the specific experiment and the region analysed. 

Figure 9 shows time series and Fig.10 presents temporally averaged statistics by bathymetric class for the second set of 460 

experiments. In terms of time series (Fig.9), the error components exhibit the same characteristics as those discussed for Exp-
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1 (Fig.4 and 5) . The uRMSE exhibits a summer minimum in all experiments. Exp-6* performs significantly worse than the 

others throughout the year. All experiments using the barotropic model have similar uRMSE values, with Exp-1* generally 

appearing slightly better than the others. The correlation coefficient (CC) increases throughout the experiment’s length. For 

this statistic as well, Exp-6* is the worst, showing consistently lower values than the other experiments. Even for the SDE, 465 

which is generally reduced compared to the previously studied experiments, the relative performance of the different 

experiments seems to be confirmed. 

Figure 10 presents the temporally averaged statistics clustered according to the bathymetry. All the experiments benefited 

greatly from the inclusion of the velocity corrections. Exp-6* confirms its poor performance in areas shallower than 1500m. 

However, by also correcting the velocities, its statistics in deep areas are now similar, or slightly better, to those obtained from 470 

experiments using the barotropic model as operator in the background error covariance matrix. Exp-1* is now the best among 

those analysed for all the bathymetric classes shallower than 500m.  

In terms of correlation coefficient, the results previously obtained by analysing uRMSE seem to be confirmed. For shallow 

areas (<1000m), Exp-6* is significantly worse than the others. In all other bathymetric classes, even confirming the previous 

findings, the differences between the experiments are less pronounced. A different behaviour is observed when analysing the 475 

standard deviation of the error. Exp-1* remains the setup that shows significantly lower error values than the others in almost 

all bathymetric classes. However, for this statistic as well, the differences between the experiments have decreased compared 

to the experiments where velocity correction was not applied. Experiment-6* is the one that benefits the most from velocity 

corrections in very deep water. 

6. Performances and Parallelization 480 

To optimize computational performance, OceanVar2 adopts a domain-decomposition scheme. This scheme leverages the 

computing power of a parallel computer by partitioning the computational domain into subdomains. Each process executes the 

necessary operations to update its portion of the global domain, sharing communications with neighbouring processes for 

lateral boundary treatments using MPI calls (Message Passing Interface). 

Rigorous testing has been conducted to guarantee bit-for-bit (BFB) reproducibility across runs with different MPI processes 485 

as well as runs with the same amount of MPI processes but different partitioning of the structured geographic grid. The quasi-

Newton L-BFGS minimizer (Byrd et al., 1995), employed for numerical minimization of the cost function, necessitates global 

matrix-vector multiplication, which precludes BFB reproducibility when domain decomposition is utilized. Divergences 

between executions stem from the non-associativity of floating-point operations, particularly floating-point summation within 

the minimizer. To mitigate this, OceanVar2 offers the flexibility to execute the minimizer serially while the remaining code is 490 

parallelized using MPI domain decomposition. Extensive testing has demonstrated that serial execution of the minimizer, 

aggregating variables from all domains, ensures BFB reproducibility. Moreover, even when the minimizer is executed in 
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parallel, differences arising from various domain decompositions are statistically insignificant. Possible future work includes 

the introduction of a different minimizer suited for MPI parallelization. 

Neglecting the differences arising from the parallel execution of the minimizer, the computational performances of the different 495 

experiments were evaluated in terms of minimizer iterations and code scalability. Figure 11 compares the number of iterations 

required for the minimizer to converge in the various OceanVar2 experiments. The results are presented as a probability 

distribution, with statistics calculated based on the year of  assimilation testing. 

All experiments using the dynamic height operator converged with fewer iterations than those employing the barotropic model. 

The choice of the level of no motion only slightly affected convergence, with a median increase from 24 to 25 iterations when 500 

using 350m or 150m instead of 1000m. Schemes with the barotropic model required few more iterations, and the median is 25 

for Exp2 and 26 for Exp-1 and Exp-3. 

To assess scalability, we limited the comparison to Exp-2 and Exp-4, as they had the same number of assimilated observations. 

We tested OceanVar2's performance with increasing numbers of cores. For a fixed number of cores, we explored different 

minimization strategies (using 8 different set of observations) and various decomposition strategies (e.g., with 16 cores, we 505 

tested 4x4 and 8x2). The model grid consisted of 1307x380x141 points along the x, y, and z directions, respectively. Results 

are shown in Fig.12. Up to 36 cores, the experiment with the dynamic height operator consistently outperformed the one using 

the barotropic model. However, Exp-4 reached a performance plateau at 36 cores, while Exp-2 demonstrated a slight 

improvement up to 72 cores, where the performance of the two setups became identical. For a larger number of processors, 

we observed a deterioration in performance due to increased communication load. 510 

7. Conclusions 

This study describes recent developments of the OceanVar variational ocean data assimilation scheme. Key innovations 

compared to the previous schemes (DB08, Storto et al., 2011, 2014) include the implementation and evaluation of two 

alternative solutions for the sea level operator, encompassing both barotropic model and dynamic height operator. Furthermore, 

a diffusive operator has been adopted to model Gaussian horizontal covariances, replacing the recursive filter used in previous 515 

code versions. Finally, the geostrophic velocity operator is utilized for total velocity corrections, deviating from the DB08 

approach and applied to both dynamic height and barotropic sea level operators. 

Furthermore, a method for filtering the tidal components of the background model fields is applied and tested allowing the 

assimilation of de-tided SLA, together with in-situ temperature and salinity data to produce analyses. These OceaVar2 new 

and old features have been tested and compared for a regional implementation of the assimilation scheme in the Mediterranean 520 

Sea.  

It has emerged that the barotropic operator is the only one capable to consistently assimilate sea level anomaly data in shallow 

and deep ocean regions. Variable alpha and beta parameters in the linear equation of state yielded minor differences in our 

experiments, however this assumption is likely not to be valid in global models.  

https://doi.org/10.5194/egusphere-2025-1553
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



 

18 
 

The dynamic height operator, though easy to implement, has clear limitations. Requiring the definition of a spatially 525 

independent level of no motion, it does not provide an optimal solution in domains with highly variable bottom topography 

and dynamics. For the Mediterranean Sea, a level of no motion equal to 1000m is appropriate, as demonstrated by the quality 

of the corrections obtained with OceanVar2. However, this represents a significant limitation, as it excludes the assimilation 

of SLA observations in shallower areas. Decreasing the level of no motion depth reveals the limitations of this approach. For 

shallower levels, the benefits of assimilating more data are offset by the loss of the quality of the corrections in deeper areas. 530 

The results are corroborated by the numerical instabilities arising when velocity corrections are applied in experiments with a 

level of no motion shallower than 350m. 

Computationally the barotropic model is more expensive than the dynamic height operator, however it has a minor impact on 

the minimization iterations. Further, the semi-implicit scheme used to discretize the barotropic equations allows for large time-

step significantly limiting the computational demand. The adopted solutions simplify the application of the OceanVar2 in 535 

complex areas of the world ocean. To our knowledge OceanVar2 is the only data assimilation scheme employing a barotropic 

model in its model background error covariance matrix. It's important to note that the current implementation of the barotropic 

model uses closed lateral boundary conditions. Its applicability is therefore limited to basins with a geometry that allows this 

approximation. The OceanVar2 code is stable, robust, its previous versions have been largely documented in several scientific 

papers, and the present version is also open to the community. Future developments could explore the implementation of lateral 540 

open boundary conditions into the barotropic model, interfacing the system with AI, and adapting it to unstructured grids 

and/or global applications. 

 

Code availability 

The OceanVar2.0 code is publicly available under a GPLv3 licence (https://www.gnu.org/licenses/gpl-3.0.txt) at 545 

https://github.com/CMCC-Foundation/OceanVar2 (this manuscript) together with a user guide on compiling and running the 

code (Adani et al., 2025, https://github.com/CMCC-Foundation/OceanVar2/blob/main/doc/OceanVar_User_Manual.pdf). 

The code used in this paper is permanently archived at https://doi.org/10.5281/zenodo.15593468 (Oddo et al., 2025). A test 

case can be downloaded at https://github.com/CMCC-Foundation/MedFS831. The ocean model used is based on the NEMO 

source code (version 4.2.0) is accessible Zenodo. https://doi.org/10.5281/zenodo.6334656 (Madec et al., 2022).  550 

 

 

Author contribution 

OP is the main author; he is the lead developer of the OceanVar2. MA played a central role in the discussion; he led the 

developments; he wrote the code, and he performed all the experiments. FC contributed to the MPI parallelization and 555 

debugging of the OceanVar2 code. AC contributed to the writing of the manuscript, and in incorporating some routines from 

previous code version. ACG computed the tidal constants used in all the experiments.  EJ, AA, FM and IE were involved in 

the discussions and the definition of the development strategy. JP computed the EOFs used in all the experiments. EC and SM 

https://doi.org/10.5194/egusphere-2025-1553
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



 

19 
 

played a central role in the discussion. NP contributed to the writing of the manuscript; she was active co-leading the scientific 

development.  560 

  

https://doi.org/10.5194/egusphere-2025-1553
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



 

20 
 

Figures 

 

Fig.1 Top panel: Model domain and bathymetry. Green and yellow dots indicate the position of the assimilated ARGO floats 
and XBT respectively. Bottom panel: example of 21-day altimetry data. Satellite tracks in red and green are used in Figure 2 565 
and 6 respectively. Three isobaths are drawn in both panels: 150, 350 and 1000m. 
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Fig.2 Sea Level Anomaly data example along the red track of Figure 1. Blue lines indicate model simulation results, while 

black lines indicate observational data. In the upper panel the full signals are plotted. The dashed line indicates where SLA are 

in regions shallower than 1000m. Middle panel is after the removal of the tidal signals, separately in the model and 570 

observations, and the along track averaged difference. Bottom panel shows the along track observational and model tidal 

signals. 
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Fig.3 SLA, Temperature and Salinity increments obtained from the different OceanVar2 set-up listed in Table1, starting from 

the same misfits. The SLA track used is drawn in green in Fig.1. For each experiment in the top panel there are the SLA 575 

increments where black dots indicate assimilated data; green dots indicate data rejected based on the coastal distance criteria, 

red dots indicate data rejected due to the level of no motion or minimum depth (in case of the barotropic model).  
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Fig.4 Time series of SLA error statistics for the entire 2021 year. Blue and green lines indicate the statistics for the simulation 580 

results and the misfit of Exp01 respectively. Top panel: unbiased root-mean-square error. Middle panel: correlation coefficient, 

in the bottom panel the standard deviation error is plotted. 
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Fig.5 SLA statistics as a function of the ocean depth. Blue and green bars indicate the simulation and Exp-1 results respectively.  585 

In the top panel the number of observations used is also provided with dark bars. 
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Fig.6 Vertical profiles of yearly averaged misfit statistics for salinity (top panels) and temperature (bottom panels). From left 

to right: uRMSE; ME; CC; SDE. Blue and green lines indicate simulation and Exp-1 results respectively.  590 
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Fig.7  S_uRMSE and S_CC  indices for percentage of improvement of the SLA misfit errors for the different experiments w.r.t 

the simulation. Top two panels: time-series. Bottom panels: average indices for bathymetry classes. 

 595 
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Fig.8 S_uRMSE and S_CC  indices for % of improvement of the SLA errors for the different experiments w.r.t Exp-1. Top 

two panels: time-series. Bottom panels: average indices for  bathymetry classes. 
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 600 
Fig.9 Second set of experiments SLA time series error statistics. Top panel: unbiased root-mean-square error. Middle panel: 

correlation coefficient. Bottom panel: standard deviation error. Colour code is provided in the middle panel legend.  
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Fig.10 SLA statistics as a function of the ocean depth. Top panel: unbiased root-mean-square error. Middle panel: correlation 

coefficient. Bottom panel: standard deviation error. Colour code is provided in the top panel legend.  605 
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 610 
Fig.11 Probability density function (Y axis) of the number of iteration (X axis) needed for the OceanVar2 minimization 

algorithm to converge. For each experiment, the lighter and darker shaded areas correspond to the 90% and 50% of the events 

respectively. The vertical lines are the medians of each distribution. Exp-1 to Exp-6 from top to bottom. 
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Fig.12 CPU time per core as function of number of cores for Exp-2 and Exp-4. Solid lines represent the average CPU time, 615 

while shaded areas indicate the maximum and minimum CPU time for each number of cores. 
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