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Abstract

This study presents recent developments of the OceanVar oceanographic three-dimensional variational data assimilation
scheme to create OceanVar2.0. The code has been extensively revised to integrate past developments into a single, consistent,
fully parallelized framework. In OceanVar, the background error covariance matrix is decomposed into a sequence of
physically based linear operators, allowing for individual analysis of specific error matrix components. We focus on the sea
level operator, which provides correlation between Sea Level Anomaly, temperature and salinity increments. OceanVar2.0
offers the flexibility to use either a dynamic height or a barotropic model for closed domains as sea level operators. A diffusive
operator to model the horizontal error correlations, replacing the previously used recursive filter, has been implemented. The
new code was tested in the Mediterranean Sea and the quality of the analysis assessed by comparing background estimates
with observations for the period January-December 2021. The results highlight the better skill of the barotropic model operator
with respect to the dynamic height one due to the assumptions required for the level-of-no-motion. Furthermore, we present a

method to assimilate along track satellite altimetry considering a forecasting model with tides.

1. Introduction

Understanding the past state of the ocean and predicting its future behaviour is critical for sustainable development of human
activities and to find a solution to climate change mitigation and adaptation strategies. Oceans are a key component of the
earth climate system, and they require specific data assimilation schemes due to the sparsity of data in the ocean interior.
However, satellites help to cover almost synoptically the ocean surface and satellite altimetry contains information of the

subsurface thermohaline structure that is key to obtain best estimates of the ocean variability at depth. Satellite altimetric sea
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level data are available from 1992, and altimeters have increased in coverage in the past ten years. Satellite altimetry and
satellite-derived sea surface temperature are crucial in bridging gaps left by in-situ observations. However, their effective
integration into model corrections requires advanced extrapolation algorithms, as demonstrated in the influential work of De
Mey and Robinson (1987).

There are different methodologies for ocean data assimilation, each with its own strengths and weaknesses. Among the inverse
problem theory, the two most used approaches are the variational and the Kalman filter (Carrassi ef al., 2018). Schemes based
on Monte-Carlo algorithms, such as the Particle filter, have been proven to be successful on low-dimensional systems and
become feasible for high-dimensional geophysical systems only recently (Van Leeuwen et al., 2019). The choice of data
assimilation method depends on factors such as the type of data available, the desired forecast horizon, and the computational
resources.

Recent machine learning (ML) advancements offer potential optimizations for ocean data assimilation (e.g., Barthélémy et al.,
2022; Beauchamp et al., 2023). ML can refine errors representation and reveal complex relationships, improving accuracy. To
fully leverage ML and new data streams, modular and flexible data assimilation codes are essential. As research progresses,
these advancements will significantly enhance our ability to understand and predict ocean behaviour.

The data assimilation community has made substantial strides in developing shared software tools like PDAF (Nerger et al.,
2005), ROMS-4DVAR (Moore et al., 2011), DART (Data Assimilation Research Testbed, Anderson ef al., 2009), just to
mention a few. Each of these tools offers unique capabilities and has contributed significantly to the field. However, the
increasing complexity of data assimilation problems, particularly with the adoption of ML, demands continued research and
development of new tools.

OceanVar is the data assimilation scheme presented and discussed in this study. It was first introduced by Dobricic and Pinardi
(2008, hereafter DP08) and it is based on a three-dimensional variational method. OceanVar features a modular design that
allows for flexibility in incorporating diverse data sources and error covariance representations. This adaptability has made it
suitable for a wide range of applications and research needs. The scheme has been extensively used in several operational and
reanalysis systems, as evidenced by numerous publications (Dobricic ef al., 2007, Storto et al., 2016, Escudier et al., 2021,
Ciliberti et al., 2022, Coppini et al., 2023). The code has been also used to develop and test new hybrid variational formulations
(Oddo et al. 2016, Storto et al., 2018); it has been interfaced with Artificial Intelligence based observational operators (Storto
et al., 2021), and has been used to test and develop numerous new schemes and features (Nilsson et al., 2012; Dobricic et al.,
2015; Aydogdu et al., 2016; Storto et al., 2020; Storto and Oddo 2019, Teruzzi et al., 2014, 2018).

The pervasive use of the code in diverse applications has led to a proliferation of versions that are not always consistent or
compatible with each other, due to different requirements and operational contexts. The development of OceanVar2.0
(hereafter OceanVar2 for improved readability) involved comprehensive testing and debugging of the underlying OceanVar
framework, which successfully ensured the consistency and reproducibility of results generated by its various computational
modules. This rigorous development positions OceanVar2.0 as what we consider a leading advancement in ocean data

assimilation specifically for satellite altimetry sea level anomalies
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In OceanVar2, we included a new operator to model the horizontal error correlations. In DP08 and all subsequent
developments, horizontal covariance was approximated using the recursive filter (Lorenc, 1992; Hayden and Purser, 1995).
The filter is conceptually simple, typically requiring only a few iterations to approximate the Gaussian function, and its
application on a horizontal grid can be split into two independent directions (Purser ef al., 2003). However, in cases of spatially
or temporally varying correlation radii, the computational advantage of the recursive filter may be questioned (Purser et al.,
2023). To give the code more flexibility in terms of horizontal correlation radii while ensuring computational efficiency, we
modelled the horizontal correlation by a repeated application of the Laplacian operator, which is also the solution of the
horizontal diffusion equation (e.g., Derber and Rosati, 1989; Weaver and Courtier, 2001).

In this paper we want to show the capability of OceanVar2 to effectively assimilate along track satellite altimetry with the use
of a barotropic model operator and multivariate sea level, temperature and salinity statistics. We believe this is still an open
question in the data assimilation community and we offer a revisited formulation of the barotropic model defined by DP08 and
for the first time a detailed comparison with the dynamic height operator. Additionally, OceanVar2 is applied to a newly
developed Mediterranean Sea circulation forecasting model (Clementi et al., 2023) that considers tidal forcing. Tides are
becoming an essential component of the resolved variability of the ocean general circulation, and they cannot anymore be
neglected in numerical ocean circulation models (Arbic, 2022). Satellite altimeters sample tides along their track as well as the
mesoscales. Using OceanVar2 we present a preliminary solution to the problem of assimilation in presence of tidal components
both in model and observations.

The manuscript is organized as follows. After the introduction, Section 1 provides a general overview of the variational
formulation and the characteristics of the OceanVar2. Section 3 presents the background and the observational error covariance
matrixes formulation and their specific operators. In Section 4 we describe the experimental set-up and the altimetry
assimilation methods. In Section 5 we discuss the results. In Section 6 an overview on the code performances is provided.

Finally, Section 7 provides the summary and conclusions.

2. Formulation of the Variational Assimilation Scheme

The general cost function in three-dimensional variational data assimilation is defined as:

1 TR-1 1 TR-1
J(x) =5 (x = x)"B7(x — xp) + > (y — h[x)"R™*(y — h[x]) )
where, x is the true state vector for the ocean model prognostic variables, x;, is the background state vector, B is the background
error covariance matrix, 4 is the observational operator, y are the observations, R is the observational error covariance matrix
and T indicates the matrix transpose. The state vector contains the following model state variables:
x=[T,S,uvn]"
where T is the three-dimensional temperature field, S the three-dimensional salinity field, # and v are the total horizontal

velocity components and 7 the two-dimensional sea surface height.
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The increments are defined as:

60X =X — Xy,

When the observations are dynamical variables of the numerical model, the observational operator is a spatial interpolation
algorithm to map the model solution into the observation locations. When the observed variables are indirectly related to model
dynamical variables, the observational operator £ may be nonlinear. Using a Taylor expansion of the observational operator
around the background, we can write:

h[x+x, — x,] = h[x, + 6x] = h[x,] + Héx

where H is the Jacobian matrix of & at x = x;,:

_on
T ox x=xp
then:
y — h[x] =y — h[x, + 6x] = {y — h[x,]} — Héx (2

In case of linear A, (2) is exact.

Defining the misfit (or innovation), d = y — h[x,], we can rewrite (1) linearized around the background state (e.g., Lorenc,
1997) as:

J(6x) = %(SxTB‘lé‘x + % (d — H6x)TR™1(d — Héx) 3)

The misfit in OceanVar is estimated using the FGAT (First Guess at Appropriate Time) method.

The minimum of J(§x) in (3) is obtained for x, = x, so that we obtain the increments §x that give the analysis at an
instantaneous time:

Xo=x,+t6x=x

The valid time of the increment using the FGAT algorithm has been discussed and investigated in literature (see Massart et
al., 2010). If the assimilation cycle goes from ¢ to :+:. the misfits are computed using the FGAT in the window [#,; tu+1]:
lityitne) = O — RIxDltyit0,01

and the increments are applied at #.+;. Formally our analysis is defined as the instantaneous field:

X (tni1) = X (E4q) +6x

where x,(t,,;1) is the instantaneous background field simulated by the nonlinear ocean model starting from .

Existence and uniqueness of x,, is guaranteed because J is quadratic with R and B positive defined and can be found by forcing

the gradient of the cost function to zero. The gradient of (3) is:

V/(6x) = (B"! + H'R"'H)6x —H'R™ ' d 4
Following DP08, the OceanVar scheme assumes that the B matrix can be rewritten and decomposed as:
B=VVT (5)

and the cost function may equivalently be minimized using a new control variable v (e.g., Lorenc, 1997) defined using the

transformation matrix V*:
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v=V*t6x (6)
Where the superscript “+” indicates the generalized inverse. The vector v is defined on the control space, and the vector §x on

the physical space. The cost function (3) now has the form:
] = %vTv + % (HVv — d)TR™1(HVv — d) (7)

3. Modelling the background error covariance matrix

The transformation matrix V is modelled at each minimization iteration as a sequence of linear operators (e.g., Weaver et al.,
2003). In this way V successively transforms increments in the control space towards final increments in the physical space.
In OceanVar and OceanVar2 the matrix V is defined in the following way:

V=VpV,, V, VyVy. (3)
From right to left Vv defines the vertical error covariance, Vu the horizontal error correlation, Vy is the sea level operator
containing correlation between temperature, salinity and sea surface elevation, and Vv forces a geostrophic balance between
temperature, salinity and the velocity components. Finally, Vb is a divergence-damping operator avoiding spurious currents
close to the coast in the presence of complex coastlines, as defined by DB0S.

The vertical transformation operator Vv has the form:

Vu = SeA 72 ©)
where columns of S¢ contain eigenvectors and Ac is a diagonal matrix with eigenvalues of multivariate Empirical Orthogonal
Functions (EOFs). In OceanVar code, the EOFs can be defined pointwise (Coppini et al., 2023) or by regions (DPO0S).

To account for horizontal field correlations, Vuis considered as the discretized form of the diffusive operator:

Vi = Vg (kVy0)

where Vy is the horizontal differential operator, k. is the spatially variable diffusivity coefficient corresponding to horizontal
correlation lengths, and C is a generic increment. The operator is discretized with a Euler-Backward implicit scheme solved
by means of LU decomposition of a tri-diagonal matrix, following Hoffman et al. (2011). Assuming a gaussian solution
(Weaver and Courtier 2001), the relation between k. and the horizontal correlation radius is:

Ry = \/M

Where Ry, in meters, is the horizontal correlation radius, and At = 1 second is the pseudo time-step used to integrate the
diffusion equation.

The present formulation of the OceanVar2 allows the possibility to compute correction also for the velocity field. The
V, v operator calculates the velocity corrections assuming geostrophic balance. The advantage of the geostrophic assumption
is that it requires only a small computational effort, but the disadvantage is that it is not valid at the equator and may produce
velocity vectors orthogonal to the coast. Enforcing the zero-boundary condition for the velocity component perpendicular to

the coast, the divergence component of the velocity field may become unrealistically large. Therefore, the divergence damping
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operator Vp in (8) is implemented to damp velocity divergence near coasts, while maintaining the vorticity part unchanged.
Details on the implementation of the divergence damping operator are provided in DP08. As highlighted in DB08, the sequence
of operator multiplication is critical and determined through a combination of physical reasoning and iterative experimentation.
Initially, all increments are projected onto multivariate EOFs for sea level, temperature, and salinity, as these effectively
capture ocean stratification (Sanchez de la Lama et al., 2016) and the relationship with sea level for assimilation purposes (De
Mey and Robinson, 1987). Next, the increments are distributed horizontally. Following this, adjustments due to the sea level
operator are computed based on the vertically projected temperature and salinity increments. Subsequently, increments in

horizontal velocities are derived, and the process concludes with the application of a divergence damping filter.

3.1 The sea level and the velocity operators

Dobricic et al. (2007) found that the vertical EOFs computed from the covariance between temperature, salinity and sea level
could produce corrections that are not geostrophically balanced and proved that the enforcement of the geostrophic relationship
for the sea level in the error covariance matrix has a significant positive impact on the accuracy of the analyses. Thus, in
OceanVar2 the sea surface height increments from EOFs projections are overwritten using a sea level operator. Two different
sea level operators, with different levels of complexity, are implemented in OceanVar2.

The first is the commonly used Dynamic Height operator (Vn =V, H), which we write here as:
Vpy = onPH = —pi [° [~adT + BsS] dz (10)
0

Where D is a uniform reference level, corresponding to a level of no motion, §T and 85 are temperature and salinity increments
respectively, a and f the expansion and contraction coefficients. The correlation between Sea Level Anomaly (SLA) from
altimetry and the dynamic height anomaly computed from in-situ measurements is high for regions deeper than 1000 m
(Dhomps et al., 2011), at synoptic, seasonal and interannual time scales.

OceanVar?2 allows the application of a more complex linear V,, which derives from the steady state results of a linear barotropic
model forced by buoyancy anomalies induced by the temperature and salinity increments (DBO0S8). The barotropic model

equations, discretized in time by the semi-implicit scheme (Kwizak and Robert, 1971), are:

n+1_pn-1 9 0 a(éb *

g [ [ a4y .
O ARy YR PR 12
nn+1_nn—1 ou* av* _

TJF(E*E)—O (13)

where U and V are vertically integrated velocity components, f'is the Coriolis parameter, g acceleration due to gravity, H the
bottom depth, 1 the surface elevation, §b the buoyancy anomaly, and y is the horizontal viscosity coefficient. The superscripts

G0

indicate the time step relative to n, and the superscript indicates the weighted average between two timesteps. A more

detailed description of the barotropic model and its discretization can be found in DBO0S. In the present version the barotropic

6
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model assumes closed lateral boundaries, thus the possibility to be used as balance operator needs to be carefully evaluated.
In the future the barotropic model will be developed also with open boundary conditions.

In the previous equations, the buoyancy forcing term is defined as:

_ (%

5b =g (%)

and the density perturbation &p is estimated by the linear equation:

6p = adT — B6S (14)

Expansion and contraction coefficients (@ and f8) in eqgs. 10 and 14 can be assumed space independent or spatially variable

and estimated linearizing the equation of state around a user defined background temperature (T},) and salinity field (S):

6p
a= |T =Tp,S=Sp

B = a_!; |T=Tb,S=Sb

In the latter case the coefficients are read from an external input file.

In OceanVar2 the sea-level operators produce the final sea surface height increments, replacing the increment produced by the
cross-covariance between temperature, salinity and sea-level provided by the EOFs (DBO08, Storto ef al., 2018).

The choice on the sea level operator has consequences on the velocity operator V. V,,, computes the velocity correction

assuming geostrophic balance under Boussinesq and incompressible approximations:

fug(2) = =22
frg@ =+--2

Decomposing the pressure p at any level z as:
0 §p
P(2) = Parm + 9Po (77 + f_zgdZ)
where p,., 1s the atmospheric pressure, g is the effective gravity, 7 is the free surface elevation and §p is the density departure

from a reference state p,. Neglecting the atmospheric pressure, and rewriting the hydrostatic term as buoyancy term, the

geostrophic velocities become:

fug(2) = = (952 + 12,55 dz) (15)
fo,(2) =+ (g + [°, 22 dz) (16)

When adopting the barotropic model as V,, the sea surface height in egs. 15 and 16 is replaced by the increments deriving
from the solution of the barotropic model and the lower limit of baroclinic term integral reaches -H(x,y), the ocean floor. On
the other hand, when V; = Vp,; the horizontal pressure-gradient force must vanish at the level of no motion, D, in (10). In egs.
15 and 16 7 is then substituted with §n°" and the velocity increments are computed only up to the depth D. Thus, in case of
the barotropic model, velocity corrections are provided for the entire water column, while in case of dynamic height velocity

corrections are provided from surface to the level of no motion.
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3.2. The observational error covariance matrix and quality checks

The observation error € is defined as the difference between the observation vector y and the observation counterpart in the
true state x' (Brankart et al., 2009)

y=hx]+e - €=@-y)-mx]-y)=e"+¢€
where y'is the rue (unknown) observation value, h* is an observation operator, €™ labels the instrumental or measurement
error (distance of the actual value from the true state) and €” gathers the different components of the representativeness errors,
due to inaccuracies in h* and the sampling error of the observations with respect to the true signal. Under the assumption of
unbiased error < € >= 0 and that €™ and € are uncorrelated, the error covariance matrix R can be constructed as the sum
of two terms that can be estimated independently :

R =< €€’ >»< €™e™ > +< €'e" >=R™ +R".

If the errors associated to different observations are uncorrelated, the two matrices greatly simplify in diagonal ones. This
hypothesis is valid for most of current global/regional observational data set and it is generally correct when observations are
sampled relatively far in time (say few hours to avoid cross-correlation term in R™) or sparse with respect to grid resolution
(to not include off-diagonal elements in R"). Observation errors are a function of observation type in OceanVar2. Several
options are implemented in the OceanVar2 to shape the observation error and the interested reader is asked to consult with the
code manual, available with the code.
OceanVar2 also contains various procedures for the quality control of observations. A background quality check is included
to reject observations that are too far from the model estimate. This quality check uses a threshold on the squared misfit defined
in (2). Alternatively, OceanVar2 allows a relaxation of the Gaussian approximation when large initial misfits are involved. In
standard theory, these misfits are associated with large weights and minimisation is primarily in the direction of reducing such
innovations rather than reducing the innovations close to zero. In OceanVar2, following Storto (2016), the initial misfit
distribution can be approximated with a Huber norm PDF to reduce the impact of such tails.
Provided that observation errors are assumed to be spatially and temporally uncorrelated, horizontal and vertical data thinning
rejects observations too close in space. In case of multiple data from the same instrument falling in the same model grid cell,
only the observation closest to the analysis time is retained. Coastal rejection can prevent the assimilation of altimetric and in-
situ coastal observations, to avoid inconsistencies between observed and modelled coastal processes. In addition, a rejection

criterion based on the model bathymetry can be activated preventing the assimilation of data in shallow areas.

4. Experimental Design

The experimental design is driven by the aim of showing the best set up of OceanVar2 for the assimilation of satellite altimetry
together with ARGO floats and XBT in the Mediterranean Sea. The set-up of the ocean model used in this study is a simplified

version of the physical component of the Mediterranean Forecasting system of the Copernicus Marine Service (Clementi et
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al., 2023). The model is implemented over the entire Mediterranean basin (Fig.1) with a horizontal grid resolution of 1/24°
(approx. 4 km) and 141 non-uniformly distributed vertical levels. The ocean model code is based on the Nucleus for European
Modelling of the Ocean NEMO (v4.2, Madec ef al., 2023) and includes the representation of tides. Atmospheric forcings are
calculated interactively with the operational fields of the European Centre for Medium-Range Weather Forecasts (ECMWF).
The only difference to the Copernicus operational system is the omission of the surface wave modelling coupling. Details on
the model implementation can be found in Clementi et al. (2023).

Starting from an operational analysis, we performed a 1-year simulation followed by one year of daily assimilation cycles of
in-situ (XBT and ARGO floats) and satellite SLA data for the whole 2021 year. Fig.1 shows the positions of the assimilated
in-situ and SLA data; the SLA data refer to a period of 21 days. In our experimental set-up we perform daily assimilation

cycles starting at midnight every day and we assimilate all the data available the day previous the analysis time.

4.1. Correcting the misfits for tides

A fundamental aspect to consider when assimilating SLA is the possible presence of tides in the modelled solution and in the
observed data. Discrepancies between modelled and observed tides can, as a first approximation, be attributed to inaccuracies
in the bathymetry of the model, the bottom and/or the coastal frictional dynamics. However, the misfit containing tidal signal
between observed and modelled estimates in the present OceanVar2 formulation would be projected into baroclinic increments
by the covariance matrix of the background error (eq. 8). It is therefore essential to filter out the tidal signal from both the
observed and modelled SLA. This paper offers a solution to the assimilation of satellite altimetry in a model with tides, showing
that a filtering procedure can be accurate enough and that no additional adjustment is required in the analysis.

The Copernicus along-track sea level anomalies are provided together with an estimate of the tidal signal along the tracks so
tides can be filtered easily from the observations. To remove the tidal signal from the model background field, the tidal
amplitude and phase for the eight components included in the Mediterranean Sea model (M2, S2, K1, O1, N2, P1, Q1 and K2)
have been derived from a simulation output by harmonic analysis of the hourly sea level field. Following Cao et al. (2015),
six months of hourly data were used for the harmonic analysis. The harmonic analysis was performed using Pawlowicz et al.
(2002) algorithm, based on the Foreman method (Foreman 1977; Foreman 1978) at each model grid point. Knowing the tidal
constants, it is possible to estimate the model tidal sea level at the exact time and location of the altimetry data and remove
this component from the model outputs.

During the model simulation, misfits between model estimates and observations are computed and before entering the
OceanVar2, the misfits are updated removing the tidal signal from both observations and model results. In Fig.2 an example
of SLA satellite track is provided with model estimates and the satellite observations, the position of the track is shown in
Fig.1. In Fig.2 upper panel, the full signal from the model simulation and the observations is drawn as a function of latitude
along the track. Figure 2 middle panel shows the de-tided signals in addition to a de-biasing procedure described by Dobricic
et al. (2012). Dobricic et al. (2012) shows that this method is the best for considering differences between the large-scale steric

signal and the mean dynamic topography between observations and model. The average difference along the track is removed
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if the track is continuous, or for individual segments if the track is discontinuous due to the presence of land. Finally in Fig.2
bottom panel the two tidal components for the observational and modelled SLA are shown indicating the large-scale signal of

tides in the open ocean.

4.2. Sensitivity experiments

In addition to a simulation, two sets of 1-year assimilative experiments are presented and their results compared and assessed
against each other and observations. All the experiments assimilate ARGO floats and XBT temperature and salinity data in the
whole domain including the Atlantic part, while SLA data are assimilated only within the Mediterranean Basin (see Fig.1). In
every experiment the vertical component of the background error covariance matrix is modelled using 25 tri-variate EOFs
(temperature, salinity and SLA) computed following Dobricic et al. (2006) for every model grid point. The EOFs are computed
from a 30 years timeseries of the Mediterranean Sea reanalysis (Escudier ef al., 2021). The horizontal correlation radius was
set to a constant value of 27 kilometres, determined through sensitivity experiments. The diffusive filter was iterated five times
to model the horizontal covariance. To account for coastal effects, the correlation radius was linearly decreased starting from
30 kilometres offshore to the minimum grid resolution near the coast. Additionally, a Neumann boundary condition was
applied at the coast, setting the normal derivative of the field to zero. Observations are rejected if they are closer than 15 km
from the coast and if the misfits are larger than fixed thresholds: 5°C for temperature, 2 psu for salinity; and 30 cm for SLA.
The observational error covariance matrix is assumed diagonal. All the SLA data have an associated error of 3 cm regardless
of the satellite and the geographic distribution. The observational errors for in-situ observations were tuned via the Desroziers’
method (Desroziers et al., 2005) and varies monthly. Temperature and salinity observational errors peak at the surface with
values of 0.45 °C and 0.14 psu, from 75 to 325m depth they decrease linearly to values of 0.2 °C and 0.05 psu, starting from
750m they have constant values of 0.1 °C and 0.02 psu respectively.

We performed two sets of experiments with different OceanVar2 sea level operators and choices of free parameters. In Exp-
1, which is used as a reference experiment, the barotropic model is used as sea level operator with constant (in space and time)
a and B in eq.14 and SLA data are rejected when falling in areas shallower than 100m. In the second experiment (Exp-2),
consistently with Adani ef al. (2011), we rejected SLA data falling in areas shallower than 150m. Experiment 3 is similar to
Exp-2, but we test the sensitivity to variable expansion and contraction coefficients in eq.14. The coefficients are computed
linearizing the equation of state around a monthly mean climatology. In all these three experiments we integrated the barotropic
model for 3 days with a time-step of 3600 sec and then used the average of the last day as approximation of the steady state
solution, the integration of the barotropic model is fully implicit and the turbulent viscosity is equal to 650 m2/s.
Experiments 4, 5 and 6 use the dynamic height as sea level operator. The difference among them is the choice of the level of
no motion depth. In Exp-4 we used a level of no motion equal to 150m, thus Exp-2 and Exp-4 differ only for the sea level
operator. In Exp-5 the level of no-motion is 350m in agreement with the Mean Dynamic Topography (Rio et al., 2014) used.
Finally, in Exp-6 the level of no motion is set at 1000 m which is the traditional choice for the operational setting of the

Mediterranean Sea forecasting system, Coppini et al. (2023). In all these experiments, the depth of the level of no motion
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naturally coincides with the minimum depth of SLA observations inclusion in the data assimilation scheme. In the first set of
experiments, even if the state vector contains also the velocity field, the increments are applied only to the assimilated variables
(7, S and n7). In the second set of experiments, also velocity corrections are applied. Throughout the remainder of the paper,
experiments marked with an asterisk refer to those with velocity corrections. The first sets of experiments are summarized in
Table 1: the second set of experiments has the same naming convention as the first set, with the sole difference being the

application of the velocity correction in the analysis definition.

Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6
Sea level operator BM BM BM DH DH DH
a/B Const. Const. MC Const. Const. Const.
Reference Level for DH (m) N/A N/A N/A 150 350 1000
SLA Min depth rejection (m) 100 150 150 150 350 1000

Table 1 Sensitivity experiments set-up. First row indicates the sea level operator used: BM= Barotropic Model; DH=Dynamic height. Second
row indicates the choice for expansion and contraction coefficients: constant in space and time (Const) and spatially and temporarily variable
as computed from monthly climatology (MC). Third row indicates the reference level for the lower integral limit of the dynamic height
operator and thus the level of not motion for the V,, part of the model background error covariance matrix. Fourth row indicates the
minimum depth used as criterium to reject SLA data.

5. Results

Before analysing the skills of the different experiments, temperature and salinity increments obtained, starting from the same
set of SLA misfits, but using the different assimilation scheme set-up described in Table 1 are shown in Fig.3. The differences
between the experiments are generally small, and of the order of 10%. The largest differences are due to the different number
of SLA data assimilated, because of the different level of no motion used or the different minimum depth rejection criterion
adopted. We note that when the same data are assimilated, thus in areas deeper than 1000m, very similar increments in SLA
are generated by the OceanVar2 regardless of the schemes adopted. However, the schemes differ on how these increments are
projected into temperature and salinity increments. Note the ordinate axes are strongly stretched in the figure to highlight the
first 150m depth where most of the corrections are confined. Comparing Exp-2 and 3, which differ only in the use of spatially
and temporally variable expansion and contraction coefficients, we observed small but noticeable differences in the
temperature and salinity increments, particularly in the amplitude of near-surface maxima. The choice of sea level operator
substantially influenced the results. When using Dynamic Height with a level of no motion set at 1000 meters (Exp-6),
temperature and salinity increments were comparable to those obtained with the barotropic model. The primary cause of the
observed differences appears to be the constraint imposed on assimilated data by the level of no motion. Reducing the level of
no motion (Exp-4 and 5) allowed for the assimilation of more sea level anomaly data, but resulted in considerably different

temperature and salinity increments within the first 100 meters compared to the barotropic model.
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To fully assess the performances of Table 1 experiments, the mean squared error (e.g., Murphy, 1988) is decomposed and the

single components analysed:

MB =1 — o, (17)

SDE = o,, — 0, (18)
1 11 — —

CC = -3 Ziea(m; —m)(0; - 0), (19)

where MB is the mean bias error, SDE is the standard deviation error and CC is the cross correlation between the modelled
and observed fields. The i-#h modelled and observed variable is denoted by m; and o;, respectively; m and o are the respective
averages (horizontal and temporal); while o,, and g, are the respective standard deviations. In addition, the unbiased root

mean squared error (uRMSE) is computed:

uRMSE = \/% YN [(m; —m) — (0; — 0)]2 (20)

It is important to note that the model results and observations used here are the same as those used to calculate misfits within
the assimilation cycle. However, while not all misfits are utilized in the assimilation process, all available observations are
included in the error statistics. This ensures that all experiments are evaluated based on the same reference dataset of
observations. Furthermore, to evaluate model performance even in very shallow regions, the observational dataset used in the
misfits, and thus in the calculation of the error statistics, includes sea level anomaly (SLA) data covering regions up to 10m
depth. This allows for the assessment of model skill in very shallow regions where data are not assimilated in any of the

presented experiments.

5.1. Barotropic sea level operator and simulation comparison

The performance of Exp-1 is compared with the non-assimilative model simulation. In Fig.4 the statistics for the SLA are
shown. Every point in the time-series represents 5-day window statistics. That is, the overbars and the standard deviations in
eqgs.17, 18, 19 and 20 are computed over a 5-day time window.

The simulation has an error, slightly growing during the second half of the year, of about 5 cm. The model with assimilation
underwent a 10-20 day adaptation period, after which the uRMSE of the misfit stabilizes around 3 cm. A slight but consistent
improvement is noted in the CC. No seasonal cycle is observed in the CC of Exp-1, whereas the simulation exhibits a distinct
summer minimum in the correlations. The SDE in the simulation is generally negative and it is characterized by 5-days
oscillations. In Exp-1, the SDE (Fig.4 bottom panel) stabilized around values of 0.25 c¢m, indicating an overestimation of the
observed variability.

The SLA yearly averaged statistics were clustered according to ocean depth and are plotted in Fig.5. In areas with bathymetry
between 150 and 2500 m, the simulation exhibited an almost constant uRMSE. However, the error increases in shallower and

deeper regions, reaching the maximum in areas deeper than 3500 m. The uRMSE of the Exp-1 was more constant and
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approximately half of the corresponding simulation statistics. Regardless of the region considered, Exp-1 has better statistics
than the simulation, indicating the effectiveness of the assimilation procedure. For the CC differences between simulation and
Exp-1 results are also evident. In the simulation, CC decreases with depth while for the Exp-1 we observe an opposite tendency.
In terms of SDE, the largest improvements w.r.t. the simulation are confined in shallow areas. The simulation underestimates
the variance in areas with bathymetry shallower than 1000m, this is particularly evident in areas shallower than 150m. The
model with data assimilation tend to overestimate the observed variability particularly in shallow areas.

In Fig.6 the vertical profiles of uRMSE, MB, CC and SDE for salinity (upper panels) and temperature (bottom panels) for the
simulation and the Exp-1 are shown. Statistics are computed against all available ARGO and XBT profiles.

In Fig.6 the vertical structure of the salinity uRMSE is similar between the simulation and the Exp-1. The salinity errors are
characterized by a near surface maxima which is reduced in the assimilative run. The MB in the simulation has a subsurface
minimum at 100 m depth, while Exp-1 misfits have almost homogenous values through all the water columns. The CC
resembles the vertical distribution of the uRMSE, with values approaching the unity in both the experiments below 500 m
depth. Finaly the salinity SDE confirms the large improvement arising from the assimilation procedure. In the near surface
layer, the simulation and the assimilative run have opposite behaviours, with the simulation overestimating the observed
variability while the assimilative run underestimating it. Below 100 m depth the SDE salinity values are noticeably reduced.
The temperature uRMSE and CC are characterized by a strong, summer intensified (not shown), subsurface
maximum/minimum due to the model difficulties in reproducing the correct stratification. A second uRMSE maximum (CC
minimum) is present around 300 m probably related to the misrepresentation of the Levantine Intermediate Water (LIW)
advection in the different Mediterranean regions. A third temperature error relative maximum is present between 1000 and
1500 m depth. The assimilation corrects all the errors by approximately 30-50% down to 500 m, less below this depth.
Temperature MB is largely improved by assimilation. The simulation tends to overestimate the observed temperature
variability, and the SDE has a marked vertical structure. In general, the assimilation seems capable to correct most of the model
errors except in the upper thermocline/mixed layer depth. Analysis of the corresponding time-series (not shown) indicates a
clear summer maximum in all the error statistics in proximity of the mixed layer depth. This behaviour is shared between all

the different experiments, but it is clearly reduced in the assimilative runs.

5.2 Sensitivity experiments to the sea level operator

Given that the CC is always positive for all the experiments, the misfit statistics for the experiments listed in Table 1 are
analysed in terms of relative improvement with respect to the simulation or Exp-1 according to the following metrics definition:

URMSEper — URMSEgapy
URMSEp,,

CCExp# - CCRef) % 100
CCrey

S_URMSEg, 4 = <

S_CCpupy = <
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Where # indicates the different experiments listed in Table 1 and “Ref” the simulation or Exp-1. In the following these statistics
are presented only for the SLA data given that a similar comparison for the temperature and salinity did not provide additional
insights.

Figure 7 illustrates the performance of the six different data assimilation experiments in terms of improvements in root-mean-
square error (S uRMSE) and correlation coefficient (S CC) relative to the model simulation. The top panels display the time
evolution of these improvements, highlighting both short-term fluctuations and overall trends. The bottom panels present the
time-averaged S uRMSE and S CC improvements clustered by bathymetric depth ranges, revealing how the effectiveness of
each experiment varies with depth. All assimilative experiments outperformed the model simulation. Experiments using the
dynamic height as the sea level operator, with levels of no motion set at 150 meters (Exp-4) or 1000 meters (Exp-6), generally
performed worse than the other experiments. For Exp-6, the differences in both uRMSE and CC were particularly noticeable
in regions shallower than 1000 meters, where SLA data were not assimilated. However, even in these regions, Exp-6
substantially outperformed the model simulation, suggesting that corrections applied in deeper areas effectively propagated
into shallower regions. In Exp-4, the deterioration in results compared to other experiments was primarily confined to deeper
regions. In areas shallower than 150 m Exp-1 outperforms the other experiments, however the performances of the experiments
are similar indicating that the coastal areas are strongly constrained by the open ocean dynamics. A clear dependence of the
S CC on model bathymetry was evident in all experiments. The percentage of improvement in S CC increased with growing
depth, with the most significant improvements observed in areas deeper than 3500 meters, where the model simulation
exhibited the smallest CC. In shallow regions, Exp-6 generally provided the smallest improvement in S CC compared to the
other experiments. The results demonstrate that certain experiments achieve substantial improvements in deep-ocean regions,
while others show more consistent performance across all depths. These results highlight the challenges associated with
choosing an appropriate level of no motion in data assimilation of SLA. The choice of the level of no motion can significantly
impact the accuracy of model analysis, especially in complex regions with varying bathymetry and ocean dynamics.

Figure 8 presents the relative performance of five data assimilation experiments (Exp-2 through Exp-6) compared to a baseline
assimilative experiment (Exp-1), now used as the reference. The top panels illustrate the time series of percentage changes in
root-mean-square error (S_uRMSE) and correlation coefficient (S_CC). The bottom panels depict the time-averaged S uRMSE
and S_CC changes, categorized by bathymetric depth ranges. In contrast to the previous figure, where improvements were
relative to a model simulation, this figure demonstrates the relative performance of each experiment against the initial data
assimilation run. Negative values indicate a decrease in performance (higher uRMSE or lower CC) compared to Exp-1, while
positive values indicate improvement. This comparison highlights the incremental benefits or drawbacks of different
experimental setups in relation to a specific data assimilation configuration.

All the experiments employing the barotropic model perform similarly to each other. In terms of time-series comparison, Exp-
4 (with dynamic height as sea level operator and level of no motion equal to 150m) has performance worse than all the other
experiments. Among the experiments using the dynamic height operator, Exp-5 generally has better results both in terms of

uRMSE and CC. The analysis per bathymetric classes shows better the differences among the experiments. None of the
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experiments outperform Exp-1 in regions shallower than 150m both in terms of uRMSE and CC. In deeper areas we see that
the Exp-4 and Exp-5 produce, in general, worse results, and the worsening is amplified as the depth increases and the level of
no motion decreases; 1000m depth is a clear boundary for the effectiveness of Exp-6. Employing the barotropic model as a
sea level operator yields consistent results, with small sensitivity to the minimum depth used in the rejection criterion or to the
choice of constant or variable expansion/contraction coefficients. This confirms the difficulty of establishing a constant level
of no motion and highlights the benefit of using the barotropic model as a balancing mechanism. Table 2 provides a summary

of the spatially and temporally averaged statistics for all experiments, including those from the second set discussed

subsequently.
uRMSE CC SDE S _uRMSEsin | S_uRMSexp1 S_CCiim S_CCexpt

Sim 5.05 0.25 -0.02 / / / /
Exp-1 2.85 0.75 0.27 43.49 / 197.64 /
Exp-2 2.85 0.75 0.28 43.59 0.17 197.74 0.04
Exp-3 2.83 0.75 0.28 43.94 0.80 199.03 0.47
Exp-4 3.02 0.72 0.24 40.18 -5.85 186.08 -3.88
Exp-5 2.89 0.74 0.28 42.75 -1.31 194.75 -0.97
Exp-6 2.92 0.73 0.28 42.12 -242 192.38 -1.77
Exp-1" 2.76 0.77 0.19 45.40 3.37 205.74 2.72
Exp-2" 2.77 0.76 0.21 45.15 2.94 204.52 2.31
Exp-3" 2.77 0.76 0.22 45.11 2.86 204.18 2.20
Exp-5" 2.79 0.76 0.22 44.80 2.32 203.16 1.86
Exp-6 2.84 0.75 0.22 43.63 0.24 199.13 0.50

Table 2. Global averages of experiments statistics. Units in uRMSE and SDE are cm. Subscripts in the relative performance statistics [%]
indicate the reference experiment used (simulation or Exp-1).

5.3. Sensitivity experiments to velocity corrections

Another set of experiments (Exp-1* to Exp-6*) was carried out including velocity corrections in the analysis estimates. The
OceanVar2 setup used in Exp-4* generated velocity increments that led to numerical instabilities in the ocean model,
preventing this simulation from completing. In contrast, the other experiments in this set ran without such issues, underscoring
the challenges associated with dynamic height methods. Consequently, our focus is on the stable experiments. Notably, the
successful experiments in the second set, which included velocity corrections, demonstrated improved performance compared
to their counterparts in the first set, which lacked velocity corrections (Table 2). The extent of improvement varies depending
on the specific experiment and the region analysed.

Figure 9 shows time series and Fig.10 presents temporally averaged statistics by bathymetric class for the second set of

experiments. In terms of time series (Fig.9), the error components exhibit the same characteristics as those discussed for Exp-
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1 (Fig.4 and 5) . The uRMSE exhibits a summer minimum in all experiments. Exp-6" performs significantly worse than the
others throughout the year. All experiments using the barotropic model have similar uRMSE values, with Exp-1" generally
appearing slightly better than the others. The correlation coefficient (CC) increases throughout the experiment’s length. For
this statistic as well, Exp-6" is the worst, showing consistently lower values than the other experiments. Even for the SDE,
which is generally reduced compared to the previously studied experiments, the relative performance of the different
experiments seems to be confirmed.

Figure 10 presents the temporally averaged statistics clustered according to the bathymetry. All the experiments benefited
greatly from the inclusion of the velocity corrections. Exp-6" confirms its poor performance in areas shallower than 1500m.
However, by also correcting the velocities, its statistics in deep areas are now similar, or slightly better, to those obtained from
experiments using the barotropic model as operator in the background error covariance matrix. Exp-1" is now the best among
those analysed for all the bathymetric classes shallower than 500m.

In terms of correlation coefficient, the results previously obtained by analysing uRMSE seem to be confirmed. For shallow
areas (<1000m), Exp-6" is significantly worse than the others. In all other bathymetric classes, even confirming the previous
findings, the differences between the experiments are less pronounced. A different behaviour is observed when analysing the
standard deviation of the error. Exp-1" remains the setup that shows significantly lower error values than the others in almost
all bathymetric classes. However, for this statistic as well, the differences between the experiments have decreased compared
to the experiments where velocity correction was not applied. Experiment-6" is the one that benefits the most from velocity

corrections in very deep water.

6. Performances and Parallelization

To optimize computational performance, OceanVar2 adopts a domain-decomposition scheme. This scheme leverages the
computing power of a parallel computer by partitioning the computational domain into subdomains. Each process executes the
necessary operations to update its portion of the global domain, sharing communications with neighbouring processes for
lateral boundary treatments using MPI calls (Message Passing Interface).

Rigorous testing has been conducted to guarantee bit-for-bit (BFB) reproducibility across runs with different MPI processes
as well as runs with the same amount of MPI processes but different partitioning of the structured geographic grid. The quasi-
Newton L-BFGS minimizer (Byrd et al., 1995), employed for numerical minimization of the cost function, necessitates global
matrix-vector multiplication, which precludes BFB reproducibility when domain decomposition is utilized. Divergences
between executions stem from the non-associativity of floating-point operations, particularly floating-point summation within
the minimizer. To mitigate this, OceanVar2 offers the flexibility to execute the minimizer serially while the remaining code is
parallelized using MPI domain decomposition. Extensive testing has demonstrated that serial execution of the minimizer,

aggregating variables from all domains, ensures BFB reproducibility. Moreover, even when the minimizer is executed in
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parallel, differences arising from various domain decompositions are statistically insignificant. Possible future work includes
the introduction of a different minimizer suited for MPI parallelization.

Neglecting the differences arising from the parallel execution of the minimizer, the computational performances of the different
experiments were evaluated in terms of minimizer iterations and code scalability. Figure 11 compares the number of iterations
required for the minimizer to converge in the various OceanVar2 experiments. The results are presented as a probability
distribution, with statistics calculated based on the year of assimilation testing.

All experiments using the dynamic height operator converged with fewer iterations than those employing the barotropic model.
The choice of the level of no motion only slightly affected convergence, with a median increase from 24 to 25 iterations when
using 350m or 150m instead of 1000m. Schemes with the barotropic model required few more iterations, and the median is 25
for Exp2 and 26 for Exp-1 and Exp-3.

To assess scalability, we limited the comparison to Exp-2 and Exp-4, as they had the same number of assimilated observations.
We tested OceanVar2's performance with increasing numbers of cores. For a fixed number of cores, we explored different
minimization strategies (using 8 different set of observations) and various decomposition strategies (e.g., with 16 cores, we
tested 4x4 and 8x2). The model grid consisted of 1307x380x141 points along the x, y, and z directions, respectively. Results
are shown in Fig.12. Up to 36 cores, the experiment with the dynamic height operator consistently outperformed the one using
the barotropic model. However, Exp-4 reached a performance plateau at 36 cores, while Exp-2 demonstrated a slight
improvement up to 72 cores, where the performance of the two setups became identical. For a larger number of processors,

we observed a deterioration in performance due to increased communication load.

7. Conclusions

This study describes recent developments of the OceanVar variational ocean data assimilation scheme. Key innovations
compared to the previous schemes (DB08, Storto ef al., 2011, 2014) include the implementation and evaluation of two
alternative solutions for the sea level operator, encompassing both barotropic model and dynamic height operator. Furthermore,
a diffusive operator has been adopted to model Gaussian horizontal covariances, replacing the recursive filter used in previous
code versions. Finally, the geostrophic velocity operator is utilized for total velocity corrections, deviating from the DB0S
approach and applied to both dynamic height and barotropic sea level operators.

Furthermore, a method for filtering the tidal components of the background model fields is applied and tested allowing the
assimilation of de-tided SLA, together with in-situ temperature and salinity data to produce analyses. These OceaVar2 new
and old features have been tested and compared for a regional implementation of the assimilation scheme in the Mediterranean
Sea.

It has emerged that the barotropic operator is the only one capable to consistently assimilate sea level anomaly data in shallow
and deep ocean regions. Variable alpha and beta parameters in the linear equation of state yielded minor differences in our

experiments, however this assumption is likely not to be valid in global models.
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The dynamic height operator, though easy to implement, has clear limitations. Requiring the definition of a spatially
independent level of no motion, it does not provide an optimal solution in domains with highly variable bottom topography
and dynamics. For the Mediterranean Sea, a level of no motion equal to 1000m is appropriate, as demonstrated by the quality
of the corrections obtained with OceanVar2. However, this represents a significant limitation, as it excludes the assimilation
of SLA observations in shallower areas. Decreasing the level of no motion depth reveals the limitations of this approach. For
shallower levels, the benefits of assimilating more data are offset by the loss of the quality of the corrections in deeper areas.
The results are corroborated by the numerical instabilities arising when velocity corrections are applied in experiments with a
level of no motion shallower than 350m.

Computationally the barotropic model is more expensive than the dynamic height operator, however it has a minor impact on
the minimization iterations. Further, the semi-implicit scheme used to discretize the barotropic equations allows for large time-
step significantly limiting the computational demand. The adopted solutions simplify the application of the OceanVar2 in
complex areas of the world ocean. To our knowledge OceanVar2 is the only data assimilation scheme employing a barotropic
model in its model background error covariance matrix. It's important to note that the current implementation of the barotropic
model uses closed lateral boundary conditions. Its applicability is therefore limited to basins with a geometry that allows this
approximation. The OceanVar2 code is stable, robust, its previous versions have been largely documented in several scientific
papers, and the present version is also open to the community. Future developments could explore the implementation of lateral
open boundary conditions into the barotropic model, interfacing the system with Al, and adapting it to unstructured grids

and/or global applications.

Code availability
The OceanVar2.0 code is publicly available under a GPLv3 licence (https://www.gnu.org/licenses/gpl-3.0.txt) at

https://github.com/CMCC-Foundation/OceanVar2 (this manuscript) together with a user guide on compiling and running the
code (Adani et al., 2025, https://github.com/CMCC-Foundation/OceanVar2/blob/main/doc/OceanVar_User Manual.pdf).
The code used in this paper is permanently archived at https://doi.org/10.5281/zenodo.15593468 (Oddo et al., 2025). A test
case can be downloaded at https://github.com/CMCC-Foundation/MedFS831. The ocean model used is based on the NEMO
source code (version 4.2.0) is accessible Zenodo. https://doi.org/10.5281/zenodo.6334656 (Madec et al., 2022).

Author contribution

OP is the main author; he is the lead developer of the OceanVar2. MA played a central role in the discussion; he led the
developments; he wrote the code, and he performed all the experiments. FC contributed to the MPI parallelization and
debugging of the OceanVar2 code. AC contributed to the writing of the manuscript, and in incorporating some routines from
previous code version. ACG computed the tidal constants used in all the experiments. EJ, AA, FM and IE were involved in

the discussions and the definition of the development strategy. JP computed the EOFs used in all the experiments. EC and SM

18



https://doi.org/10.5194/egusphere-2025-1553
Preprint. Discussion started: 10 June 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

played a central role in the discussion. NP contributed to the writing of the manuscript; she was active co-leading the scientific

560 development.

19



https://doi.org/10.5194/egusphere-2025-1553
Preprint. Discussion started: 10 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Figures

42°N
39°N
36°N |
33°N
30°N
27°N
=
4
42°N N =
e A ’
¢ ' 5 ll 1\
oW i il e 8
‘ :;ﬂiﬁ‘.“.:'- '}.'{v !‘ ‘,',_
36°N | o %‘QM (!
- b 7 | 4
: AN, e
330N v e ) ti:»'.'::-'&'-.":ﬁ-d“"" .5,:(.'&»_., .
ﬁ' * S S
30°N : =
o
Yvd =4
7Nl 2 4L~
10°W 0° T0°E

Fig.1 Top panel: Model domain and bathymetry. Green and yellow dots indicate the position of the assimilated ARGO floats
565 and XBT respectively. Bottom panel: example of 21-day altimetry data. Satellite tracks in red and green are used in Figure 2
and 6 respectively. Three isobaths are drawn in both panels: 150, 350 and 1000m.
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Fig.2 Sea Level Anomaly data example along the red track of Figure 1. Blue lines indicate model simulation results, while
black lines indicate observational data. In the upper panel the full signals are plotted. The dashed line indicates where SLA are
in regions shallower than 1000m. Middle panel is after the removal of the tidal signals, separately in the model and

observations, and the along track averaged difference. Bottom panel shows the along track observational and model tidal

signals.
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red dots indicate data rejected due to the level of no motion or minimum depth (in case of the barotropic model).
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Fig.6 Vertical profiles of yearly averaged misfit statistics for salinity (top panels) and temperature (bottom panels). From left

590  to right: uURMSE; ME; CC; SDE. Blue and green lines indicate simulation and Exp-1 results respectively.
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